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ABSTRACT: Herein, the overall structure of a nanocluster coprotected by
phosphine and mercaptan ligands [Au;Ags(SPh)¢((p-OMePh);P)g]NO;
(Au;Agg) was reported. For comparison, a previously reported nanocluster
with the same structure, but a different metal composition,
[Au,3Cu,(TBBT)g((p-CIPh);P)s]SbFg  (Au4;Cu;), was synthesized. In
addition, their optical and electrocatalytic CO, reduction properties were
comprehensively compared. The results reveal that the photoluminescence
quantum yield (PLQY) of the Ag-doped Au,Agg nanocluster is 1.62%, which
is seven times greater than that of the Cu-doped Au4;Cu, nanocluster (PLQY =
0.23%). Furthermore, the Auy3Cu, nanocluster demonstrates significantly
enhanced catalytic selectivity for CO, with a CO Faradaic efficiency ranging
from 79.7% to 90.4%, compared with that of the Au;Agg nanocluster (CO
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Au,;Cu,
FEco: 90.4%
PLQY: 0.22%

VS

FEco: 77.7%
PLQY: 1.54%
Faradaic efficiency: 67.2%—77.7%) within a potential range of 0.5 to —1.1 V. From structural analyses, the superior CO

selectivity of Au,;Cu, is attributed to the copper dopant.
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1 Introduction

Ligand-protected atomically precise metal nanoclusters have
attracted significant attention because of their definite atomic
structures and exceptional physical and chemical properties, which
encompass  attributes such as luminescence, chirality,
electrochemistry, and catalysis [1-25]. Within the realm of metal
nanoclusters, those sharing similar structures but comprising
different metals offer a unique opportunity for the in-depth
exploration of atomic level metal synergy [26-31]. To completely
harness their potential in various applications, synthesizing alloy
nanoclusters with analogous structures but distinct metal
compositions is crucial, enabling a comprehensive examination of
the factors influencing their properties. Although substantial
progress has been made in the preparation of alloy nanoclusters
with similar structures, their limited availability continues to hinder
their widespread application [32-37]. Consequently, the synthesis
of analogous alloy nanoclusters is imperative.

Research on such alloy nanoclusters has attracted increasing
attention in previous studies [11, 20, 28, 31, 33, 38-41]. From these
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studies, a preliminary understanding of the origin of the optical
properties of metal nanoclusters is obtained, and theoretical
guidance for designing nanoclusters with high photoluminescence
quantum yields (PLQYs) is provided [4, 40, 42, 43]. For example,
the luminescence of metal nanoclusters primarily originates from
their metal cores, and the free electron shrinkage induced by
doping with inert metals can significantly increase the PLQY of
nanoclusters [26]. On the other hand, as an ideal model catalyst,
metal nanoclusters can be used to adjust the species and selectivity
of products obtained by the electrocatalytic CO, reduction reaction
(eCO,RR) and further investigate the catalytic reaction mechanism
at the atomic level [44-47]. For instance, when Cd doped on the Au
nanocluster surface can help capture CO,, the hydrogen evolution
reaction was effectively restrained [44]. In addition, doping gold
atoms into the core of nanoclusters can cause the centralization of
free valence electrons towards the core, which is beneficial for
eCO,RR [8]. Metal catalysts are crucial in electrocatalysis [48-50].
Recently, studies on the catalytic performance of isomeric alloy
nanoclusters have also gained attention [8, 11]. Research into
catalytic properties based on precise structures demonstrates
promise for guiding the design and synthesis of alloy catalysts with
high catalytic activity.

Herein, the synthesis, crystal structure analysis, and optical and
electrocatalytic CO, reduction properties of [Au,Agg(SPh)y
((p-OMePh);P)g]NO; (Au,Agg) nanoclusters were reported.
Meanwhile, the [Au;;Cu,(TBBT)4((p-CIPh);P)s]SbF, (Au,5Cu,)
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nanocluster was also synthesized for comparison [33]. Both
nanoclusters exhibit the same core structure, but differ in their
metallic compositions. The PLQY of 1.62% for Au,Agg is
considerably greater than that for Au,;;Cu, (0.23%). In addition, the
two catalysts exhibit different catalytic properties toward eCO,RR.
Au,;Cu, exhibits a high CO Faradaic efficiency (FE¢q) of 90.4% at
-0.6 V, which is considerably greater than that of the Au,Agg
nanocluster (FEco: 77.7% at —0.6 V). Understandably, Cu doping
can increase the selectivity for reducing CO, to the CO product.
Our work can aid in obtaining a better understanding of the effect
of metal synergy on optical and catalytic properties at the atomic
level.

2 Experimental section

2.1 Chemicals

Silver nitrate (AgNO;, 98% metal basis), hydrogen tetrachloroaurate
tetrahydrate (HAuCl,-4H,0, 99.5% metal basis), copper chloride
dihydrate (CuCl,2H,0, 99.9%, metal basis), tris(4-methoxyphenyl)
phosphine ((p-OMePh);P, 98%), tris(4-chlorophenyl)phosphine ((p-
CIPh);P, 99.5%), thiophenol (CcHS, PhSH, 98%), 4-tert-
butylthiophenol (CioHuS, TBBT, 98%), sodium
hexafluoroantimonate ~ (NaSbF;, 99%), sodium borohydride
(NaBH,, 99.9%), methylene chloride (CH,CL,, HPLC grade), diethyl
ether (C,HsOC,H;, HPLC grade), methanol (CH,OH, HPLC
grade), acetonitrile (CH;CN, HPLC grade), n-hexane (CsH,,,
HPLC grade), ethyl alcohol (CH;CH,OH, HPLC grade), acetone
(C3HO, HPLC grade), and isopropanol (C;HgO) were commercial
and used directly.

2.2 Synthesis of the Au,Agg; nanocluster

Typically, HAuCl,4H,0 (0.20 g/mL, 300 pL, 0.15 mmol) and
AgNO; (90 mg, 0.53 mmol, dissolved in 2 mL of H,0) were
injected into 5 mL of ethyl alcohol and 15 mL of CH,Cl, under
intense agitation. After stirring for 5 min, (p-OMePh);P (160 mg,
0.45 mmol) and PhSH (0.24 mL, 2.34 mmol) were successively
added to the reaction mixture, and the solution color changed from
brown to light-yellow. After vigorous stirring for 0.5 h, NaBH, (90
mg, 2.38 mmol, dissolved in 5 mL of H,O) was rapidly added to the
reaction solution, and the reaction solution gradually turned dark.
The entire reaction lasted for 12 h at ~ 25°C; finally, the Au,Agg
nanocluster was produced (yield ~ 25%, Au atom basis). Next, to
obtain the pure product of Au,Ags nanoclusters, the reaction
solution was centrifuged and evaporated. The crude product of
Au,Ag; nanoclusters was washed thrice with CH;OH (10 mL) and
n-hexane (10 mL), affording pure Au,Agg nanoclusters. Black and
block-shaped crystals were obtained by crystallizing pure Au,Agg
nanoclusters in CH,ClL/C,H;OC,H; (1:3) after ~ 4 days at room
temperature.

2.3 Synthesis of the Au;;Cu, nanocluster

Au,;Cu, was synthesized according to a previously reported
method with slight modifications [33]. First, HAuCl,4H,0
(0.2 g/mL, 400 pL, 0.2 mmol) and CuCl,-2H,0O (40 mg, 0.23 mmol)
were successively added to a mixed solution of 5 mL of CH,OH
and 15 mL of CH,Cl,. After 3 min, (p-CIPh);P (300 mg, 0.82
mmol) was added. The solution color changed from orange to
green after 20 min. Then, TBBT (100 pL, 0.6 mmol) was injected
into the reaction solution. After 20 min, the reaction solution
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became muddy-white. Finally, NaBH, (80 mg, 2.1 mmol, dissolved
in 5 mL of H,0) was rapidly added to the reaction mixture. After
12 h, NaSbF (0.2 mmol, 50 mg, dissolved in 1 mL of CH;OH) was
added to the organic phase, and the reaction solution was dried.
Next, the crude product of Au,;;Cu, nanoclusters was washed thrice
with CH;0H and CH;CN, and the crude product was extracted
with acetone. By the liquid diffusion of CH,4 into the CH,Cl,
solution of the nanocluster for 3 days, black crystals were obtained.

3 Results and discussion

3.1 Preparation and characterization of the Au,Agg
nanocluster

The Au,Agg nanocluster was prepared using the one-pot method.
Briefly, Au-Ag complexes (Au(I)/Ag(I)-SR/PR;, SR = SPh; PR; =
(p-OMePh);P) were reduced by NaBH, in a mixed solvent (CH,CL,
and CH;O0H), and the reaction was allowed to proceed for 12 h. By
diffusing C,H;OC,H; into the CH,Cl, solution of the coarse
product, black block-shaped crystals were obtained (Fig. S1 in the
Electronic Supplementary (ESM)). A detailed synthetic procedure
can be found in the experimental section.

Single-crystal X-ray diffraction (SC-XRD) revealed that the
structure and exact molecular formula of the nanocluster was
Au,Agy(SPh)((p-OMePh);P); (Fig. 1(a)). The molecular
composition and valence state of Au,Agg were confirmed by
electrospray ionization mass spectrometry (ESI-MS, in the positive
mode). As shown in Fig. 1(b), a distinct peak labeled B with an m/z
value of 5715.17 Da was observed, corresponding to the +1 valence
state (m/z = 1) of Au,Agg(SPh)4((p-OMePh);P)s. The experimental
results were in good agreement with the theoretical value
(calculated to be 5715.06 Da, with a deviation of 0.11). Peaks A and
C were attributed to the formulas [AugAg,(SPh)((p-OMePh),P),]*
and [AugAg,(SPh)s((p-OMePh);P)s]", respectively. The above data
indicate that both nanoclusters exhibit an 8-electron structure (15 —
6 — 1 = 8). Furthermore, X-ray photoelectron spectroscopy (XPS)
measurements confirmed the presence of Au, Ag, S, P, O, N, and C
in the Au,Agg crystals (Fig. 1(c)). The Au/Ag atomic ratio in
Au,Ag, was estimated to be 6.87/7.13, which was in agreement with
the SC-XRD result (7/8) (Fig. S2 in the ESM). The elemental
composition (Au, Cu, S, P, C, and Cl) of the Au,;Cu, nanocluster
was also confirmed (Fig. S3 in the ESM). In addition,
thermogravimetric analysis (TGA) confirmed the metal-to-ligand
ratio in Au,Agg and the experimental value of 60.63% was in
agreement with the theoretical value of 61.20% (Fig. 1(d)).
Moreover, energy-dispersive spectrometry confirmed the presence
of Au, Ag, S, P, and O in the Au,Agg crystals (Fig. $4 in the ESM).
In the XPS spectrum, the presence of the N peak and absence of the
Cl peak indicated that the anionic component of the cluster was
NO; and not CI.

3.2 Crystal structure of the two My; nanoclusters

The crystal structures of the Au,Agz and Au;Cu, nanoclusters
were compared [33]. The comprehensive structure of the Au,Agg
nanocluster was elucidated by SC-XRD (Fig. S5(a) in the ESM).
Remarkably, the structure of the Au,Agg nanocluster was
fundamentally identical to that of the Au;;Cu, nanocluster
(Fig. S5(b) in the ESM). To compare the structural differences, the
crystal structures of the Au,Ags and Au;;Cu, nanoclusters are
shown in Fig. 2. The Au,Agg nanocluster comprised an icosahedral
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Figure1 (a) Overall structure of the Au,;Agg nanocluster. (b) ESI-MS profile of Au,Ag; in the positive mode. Inset: comparison of the calculated (red) and experimental
(black) isotope distribution of [Au,Agg(SPh)s((p-OMePh);P),]". (c) XPS spectrum of the Au,Agg nanocluster. (d) TGA curve of the Au,Agg nanocluster. Color labels:

orange = Au; light blue = Ag; magenta = P; red = O; yellow = S; gray = C; white = H.

Au,Ag metal core surrounded by two Ag(SR);PR; surface motifs at
the top and bottom, forming the Au,Agg(SR)s(PR;), structure
(Fig. 2(a) and 2(b)). Each of the six Au atoms on the Au,Ag kernel
surface was bonded to a PR, ligand, resulting in the overall
structure of Au,Agg(SR)s(PR;)s (Fig. 2(c) and 2(d)). For the
Au,;Cu, nanocluster, the M,; core was entirely composed of gold,
with copper positioned at the bottom and top of the icosahedron,
forming the overall structure of Au;3Cu,(SR’)s(PR%)s (SR =
CoH;5S; PR’; = (p-CIPh),P). A detailed analysis of the bond lengths
is shown in Fig. S6 in the ESM. In the case of the M,; metal core,
the average Auma—AUWAG uhera SUrface bond length for Au,Agg
(2.776 A) was similar to that of Au,;Cu, (2.772 A). Furthermore,
the AWAG ahedral suface— AW AGicoshedral  suface ONd  lengths  for
Au,Agg (2915 A) and Au;Cu, (2916 A) were nearly identical.
Because the atomic radius of Cu was less than that of Ag, significant
differences existed in the distances between S and the metal atoms
at both ends. In Au,Agg, the average bond length between S and
the two Ag atoms was 2.609 A, whereas in Au,;Cu,, the bond
length between S and the two copper atoms was 2.396 A. The
atomic radius not only affected the bonding distances with the thiol
ligands but also significantly affected the P-metal distances. For
instance, in the Au,Agg nanocluster, the distance between P and the
terminal Ag atoms was 2.562 A, which was notably greater than
that of the P-Cu distance in Au,;;Cu, (2297 A). Simultaneously,
owing to the relatively small difference in the atomic radii between
Au and Ag, the distance between S/P and the M,;; core was
relatively minor (see Fig. S6 in the ESM for details).

Next, the molecular packing arrangements were further
analyzed. As shown in Fig. S7 in the ESM, Au,Agg crystallized in
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the P3 1¢ space group within the trigonal crystal system (Table S1 in
the ESM summarizes the detailed crystal parameters). In contrast,
Au,y;Cu, crystallized in the P21/c space group within the
monoclinic crystal system. Furthermore, Au,Agg clusters were
arranged in the unit cells in the “ABAB” packing mode (Fig. S8 in
the ESM). This packing mode was consistent with those of several
nanoclusters but differed from the “ABBA” packing mode observed
for the Au,3Cu, nanocluster (Fig. S9 in the ESM) [40, 51].

3.3 Optical properties of the two M;; nanoclusters

As shown in Fig. 3, the optical properties of the Au,Agg and
Au,;Cu, nanoclusters were comparatively analyzed. For Au,Agg,
the ultraviolet-visible (UV-vis) absorption spectrum revealed four
prominent absorption peaks at approximately 348, 386, 460, and
643 nm, respectively, in addition to one less intense peak at 500 nm
(Fig. 3(a)). In CH,Cl,, the solution appeared yellow.

After converting the UV-vis absorption spectra into
photoelectron spectra, the excitation energies of the Au,Agg
nanocluster were 1.93, 2.48, 2.69, 3.21, and 3.56 eV, respectively
(Fig. 3(c)). The experimental energy gap was calculated to be 1.66 eV.
In contrast, for Auy;;Cu,, two intense absorption peaks were
observed at 383 and 573 nm, in addition to a weaker peak at 752
nm (Fig. 3(b)). In CH,CL, the solution appeared yellow-green.
Photoelectron spectra revealed that the excitation energies of the
Au,;Cu, nanocluster were 1.65, 2.16, and 3.24 eV, respectively, and
the experimental energy gap was calculated to be 1.29 eV (Fig. 3(c)
above). Moreover, the photoluminescence (PL) spectra of Au,Agg
and Au;Cu, nanoclusters were compared with that of
Ag,;(SPhMe,),s (PLQY = 0.6%, CH,Cl,) as a reference (Fig. 3(d))
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Figure2 Structural analysis of the Au,Agg and Au;;Cu, nanoclusters. (a) Icosahedral Au,Agg kernel. (b) Au;Agg(SR)s(PR;), structure with two Ag(SR);PR; surface motif
structures at the top and bottom, respectively. (c) Au;Agy(SR)s(PRy)s structure with six waist PR, ligands. (d) Overall structure of the Au,Agg nanocluster. (e) Icosahedral
Auy; kernel. (f) Auj;Cuy(SR)4(PR’;), structure with two Cu(SR’),PR’; surface motif structures at the top and bottom, respectively. (g) Au,;Cu,(SR)4(PR’;)s structure with
six waist PR’; ligands. (h) Overall structure of the Au;;Cu, nanocluster. Color labels: orange = Au; light blue = Ag; brown = Cu; yellow = S; magenta = P; gray = C; green =
Cl; white = H.
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Figure3 Optical properties of Au,Agg and Au,;Cu, nanoclusters. (a) and (b) UV-vis absorbance spectra of Au,Agg and Auy;Cu, in CH,Cl. Insets show photographs of
the two nanoclusters in CH,Cl,. (c) Photoelectron spectra plotted along the energy axis of Au,Agg (under) and Au;3Cu, (upper). (d) Photoluminescence spectra of
Au,Agg and Auy;Cu, in CH,CL,.

[20]. Au,Ags and Au;Cu, exhibited distinct PL properties. In
CH,CL, Au,Ag; exhibited a prominent emission peak at 710 nm
with a PLQY of 1.62%. Conversely, Au,;3Cu, exhibited a
significantly lower PLQY (0.23%), and its emission band was red-
shifted to 906 nm. In the solid state, the emission peak exhibited a
similar red-shift from 813 nm for Au,Agg to 947 nm for Au,;Cu,
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(Fig. S10 in the ESM).

34 Electrocatalytic CO, reduction properties of the two
M;; nanoclusters

To investigate the electrocatalytic CO, reduction properties of the
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two M;; nanoclusters, electrocatalytic CO, reduction reactions were
conducted in a custom-designed flowcell reactor [52]. Both
nanoclusters were deposited onto Ketjen carbon (C) with a loading
of 50 wt.%, resulting in the formation of Au,Ags/C and Au,;Cu,/C.
Gas chromatography revealed that under all applied potentials
(without IR correction), CO and H, were the only gaseous
products. The linear scanning voltammetry curves of Au,Ags/C
and Au;Cu,/C in N,-saturated (full line) and CO,-saturated
(dashed line) solutions of 1.0 M KOH are shown in Fig. 4(a). The
total current densities (jr,) of the two catalysts in the CO,-
saturated electrolyte were considerably greater than those in the N,-
purged electrolyte, respectively, indicating that Au,Agg/C and
Au,;Cu,/C can effectively catalyze CO,RR. Moreover, compared to
Au,Agy/C, Auy;Cu,/C exhibited a considerably higher jr, and a
more positive onset potential in CO,/N,-purged 1.0 M KOH,
indicative of a higher CO, reduction selectivity. Therefore, the
eCO,RR catalytic activity of Au;;Cu,/C was greater than that of
Au,Agy/C, which was attributed to the metal composition of the
clusters and not the size of the clusters. As shown in Fig. 4(b),
Au,;Cu,/C exhibited high selectivity for CO under all tested
potentials, as confirmed by the higher FE, of 90.4%, ranging from
59.2% at —1.2 V to 90.4% at —0.6 V (vs. RHE). In contrast, similar
to the shape of a volcano, the FE, of Au,Agy/C was measured.
The highest FE, value of 77.7% at —0.6 V (vs. RHE) was obtained,
ranging from 61.8% at —1.2 V (vs. RHE) to 77.1% at —0.6 V (vs.
RHE). Notably, CO exhibited a higher Faradaic efficiency at
positive potentials, and the FE., of Au,3Cu,/C was greater than
that of Au;Age/C from —0.5V to —1.1 V (vs. RHE).

The reduction products for the two catalysts were only CO and
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H,, and the sum of the FE values was close to 100% under all tested
potentials (Fig. 4(d)). Other liquid products were not detected by
NMR. Moreover, hydrogen evolution reaction (HER) became
dominant at more negative potentials. The highest H, Faradaic
efficiency (FEy,) reached 37.1% at —1.2 V (vs. RHE) for Au,Ag,/C
and 39.5% at —1.2 V (vs. RHE) for Au,;Cu,/C (Fig. S11(a) in the
ESM). Furthermore, with an increase in the tested potential for the
Au,Ag,/C and Au,;Cu,/C catalysts, the CO partial current density
(jco) increased (Fig. 4(c)). Compared to Au,Agy/C, Auj;Cu,/C
exhibited a considerably higher CO selectivity under full potentials,
which is indicative of the unique advantage of Cu-doped
nanoclusters for electrocatalytic reduction of CO, to CO. Notably,
the H, partial current density (ji;,) of Auy;Cu,/C was less than that
of Au,Agy/C from —0.7 to —1.2 V (vs. RHE), indicating that doping
with Cu could increase the selectivity of the CO product at high
potentials (Fig. S11(b) in the ESM) [53]. These results indicated that
the introduction of a few copper atoms into the nanoclusters can
considerably improve the selectivity of CO. Furthermore, the
fingerprint absorbance peak (643 nm for Au,Agg 573 nm for
Au,;;Cu,) of the two nanoclusters after eCO,RR was almost the
same as before (Fig. S12 in the ESM), indicating that the structure
of the two M5 nanoclusters essentially maintained.

Furthermore, the electrochemically active surface area (ECSA) of
the two M5 nanoclusters was estimated. The cyclic voltammetry
(CV) curves of Au,Agg/C and Au,3Cu,/C at different scan rates
ranging from 0.02 to 0.1 V-s™ were measured (Fig. S13 in the ESM).
The double-layer capacitance (Cy) values of the two catalysts were
calculated to be 1243 and 7.02 mF, respectively. Therefore, the
ECSA values of Au;Agy/C and Au,;Cu,/C were calculated to be
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Figure4 Electrocatalytic properties of the Au;Agy/C and Au,;Cu,/C nanoclusters in eCO,RR. (a) Linear sweep voltammetry (LSV) curves of the two catalysts in an N,-
purged (full line) and a CO,-saturated (dashed line) 1.0 M KOH solution. (b) FE¢ and (c) jio of the two catalysts. (d) Total FE for various eCO,RR products (CO and
H,) of the Au,Agy/C (upper) and Au,;Cu,/C (bottom) catalysts. Error bars represent the standard deviation of three tests at the same applied potential.
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310.75 and 175.5 cm’, respectively.

In contrast, compared with Au;;Cu,/C, Au,Agy/C exhibited
diminished selectivity for CO; however, the density of active sites in
the Au,Agg nanocluster was significantly greater than that in its
Au,;Cu, counterpart. Moreover, to estimate the electron transport
capability of Au,Agy/C and Au;Cu,/C, electrochemical impedance
spectroscopy (EIS) was performed (Fig. S14 in the ESM). Distinctly
different EIS curves were observed, indicating that the two catalysts
exhibited different electron transport properties. Compared to
Au,;Cu,/C, Au,Agy/C exhibited a considerably smaller semicircle
diameter; Au,Agy/C exhibited a lower conductivity of interfacial
charge-transfer resistance. This result suggested that compared with
Au;Cu,, Au,Agg would provide electrons to the intermediates
more efficiently during electroreduction.

4 Conclusions

In summary, Au,Agg nanocluster was successfully synthesized, and
its crystal structure was determined. A previously reported Au,;;Cu,
nanocluster with a similar isomeric composition was prepared for
comparison. The comparison of their optical and catalytic
properties revealed that compared with Cu doping, Ag doping
effectively enhanced the photoluminescence quantum yield of the
nanoclusters (by a factor of 7). In the context of electrocatalytic CO,
reduction reaction, the addition of a small quantity of copper, while
enhancing the catalytic selectivity for CO production, concurrently
reduces the ECSA. In an ideal electrocatalyst, a delicate balance
between selectivity and preservation of an optimal ECSA should be
achieved. Currently, the incorporation of multiple metals to achieve
synergistic catalysis for enhanced selectivity and efficiency is
underway in our laboratory. Our study provides experimental
evidence for understanding and designing nanoclusters with
specific properties at the atomic level.

Electronic Supplementary Material: Supplementary material
(optical microscopic, SEM-EDS and XPS of Au,Agg XPS of
Au,;Cu,; overall structures, bond lengths, unit cells, packing mode
of Au;Agg and Auj;Cuy FEp, jipp, ECSA, EIS and stability of
Au;Agy/C and Au;Cuy/C; crystal structure parameters of Au,Agg)
is available in the online version of this article at https://doi.
0rg/10.26599/POM.2024.9140054.
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