16,462 research outputs found

    Phases of granular segregation in a binary mixture

    Full text link
    We present results from an extensive experimental investigation into granular segregation of a shallow binary mixture in which particles are driven by frictional interactions with the surface of a vibrating horizontal tray. Three distinct phases of the mixture are established viz; binary gas (unsegregated), segregation liquid and segregation crystal. Their ranges of existence are mapped out as a function of the system's primary control parameters using a number of measures based on Voronoi tessellation. We study the associated transitions and show that segregation can be suppressed is the total filling fraction of the granular layer, CC, is decreased below a critical value, CcC_{c}, or if the dimensionless acceleration of the driving, γ\gamma, is increased above a value γc\gamma_{c}.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    Nanogold-based materials in medicine: from their origins to their future.

    Get PDF
    The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine

    Marine polysaccharide multilayers: PH responsive systems for the surface modification of tissue engineering scaffolds

    Get PDF
    [Excerpt] The success of some polymeric scaffolds for Tissue Engineering is hindered by its surface chemistry, which in many cases leads to a significant foreign body response. To overcome this, the present project intend to explore a strategy of surface modification through electrostatic self-assembly, first reported in the 1990s, by the construction of multilayered systems by assembling a polycation and a polyanion in an alternate fashion. [...]info:eu-repo/semantics/publishedVersio

    Ising-type Magnetic Anisotropy in CePd2_2As2_2

    Full text link
    We investigated the anisotropic magnetic properties of CePd2_2As2_2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2_2Si2_2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large cc-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure ±5/2\langle\pm5/2 \rvert CEF ground-state doublet with the dominantly ±3/2\langle\pm3/2 \rvert and the ±1/2\langle\pm1/2 \rvert doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at TN=14.7T_N=14.7 K with the crystallographic cc-direction being the magnetic easy-axis. The magnetic entropy gain up to TNT_N reaches almost Rln2R\ln2 indicating localised 4f4f-electron magnetism without significant Kondo-type interactions. Below TNT_N, the application of a magnetic field along the cc-axis induces a metamagnetic transition from the AFM to a field-polarised phase at μ0Hc0=0.95\mu_0H_{c0}=0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.Comment: 9 Pages, 8 figure

    Port-Hamiltonian formulation of nonlinear electrical circuits

    Get PDF
    We consider nonlinear electrical circuits for which we derive a port-Hamiltonian formulation. After recalling a framework for nonlinear port-Hamiltonian systems, we model each circuit component as an individual port-Hamiltonian system. The overall circuit model is then derived by considering a port-Hamiltonian interconnection of the components. We further compare this modeling approach with standard formulations of nonlinear electrical circuits

    Surface potential change in bioactive polymer during the process of biomimetic apatite formation in a simulated body fluid

    Get PDF
    A bioactive polyethylene substrate can be produced by incorporation of sulfonic functional groups (-SO3H) on its surface and by soaking in a calcium hydroxide saturated solution. Variation of the surface potential of the polyethylene modified with -SO3H groups with soaking in a simulated body fluid (SBF) was investigated using a laser electrophoresis zeta-potential analyzer. To complement the study using laser electrophoresis, the surface was examined by X-ray photoelectron spectroscopy (XPS), thin film X-ray diffraction (TF-XRD), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive electron X-ray spectroscopy (EDS). Comparing the zeta potential of sulfonated and Ca(OH)2-treated polyethylene with its surface structure at each interval of these soaking times in SBF, it is apparent that the polymer has a negative surface potential when it forms -SO3H groups on its surface. The surface potential of the polymer increases when it forms amorphous calcium sulfate. The potential decreases when it forms amorphous calcium phosphate, revealing a constant negative value after forming apatite. The XPS and zeta potential analysis demonstrated that the surface potential of the polyethylene was highly negatively charged after soaking in SBF for 0.5 h, increased for higher soaking times (up to 48 h), and then decreased. The negative charge of the polymer at a soaking time of 0.5 h is attributed to the presence of -SO3H groups on the surface. The initial increase in the surface potential was attributed to the incorporation of positively charged calcium ions to form calcium sulfate, and then the subsequent decrease was assigned to the incorporation of negatively charged phosphate ions to form amorphous calcium phosphate, which eventually transformed into apatite. These results indicate that the formation of apatite on bioactive polyethylene in SBF is due to electrostatic interaction of the polymer surface and ions in the fluid

    Empathic forecasting: How do we predict other people's feelings?

    Get PDF
    When making affective forecasts, people commit the impact bias. They overestimate the impact an emotional event has on their affective experience. In three studies we show that people also commit the impact bias when making empathic forecasts, affective forecasts for someone else. They overestimate the impact an emotional event has on someone else's affective experience (Study 1), they do so for friends and strangers (Study 2), and they do so when other sources of information are available (Study 3). Empathic forecasting accuracy, the correlation between one person's empathic forecast and another person's actual affective experience, was lower than between-person forecasting correspondence, the correlation between one person's empathic forecast and another person's affective forecast. Empathic forecasts do not capture other people's actual experience very well but are similar to what other people forecast for themselves. This may enhance understanding between people

    Formation of bone-like apatite on polymeric surfaces modified with -SO3H groups

    Get PDF
    Sulfonic groups (-SO3H) were covalently attached on different polymeric surfaces enabling them to induce apatite nucleation, for developing bioactive apatite-polymer composites with a bonelike 3-dimensional structure. High molecular weight polyethylene (HMWPE) and ethylene-co-vinyl alcohol co-polymer (EVOH) were used. The polymers were soaked in two types of sulphate-containing solutions with different concentrations, sulphuric acid (H2SO4) and chlorosulfonic acid (ClSO3H). To incorporate calcium ions into to the sulfonated polymers, the samples were soaked in a saturated Ca(OH)2 solution for 24 hours. After soaking of the samples in a simulated body fluid (SBF), formation of an apatite layer on both surfaces was observed. The results obtained prove the validity of the proposed concept and show that the -SO3H groups are effective on inducing apatite nucleation on the surface of these polymers.(undefined
    corecore