16,462 research outputs found
Phases of granular segregation in a binary mixture
We present results from an extensive experimental investigation into granular
segregation of a shallow binary mixture in which particles are driven by
frictional interactions with the surface of a vibrating horizontal tray. Three
distinct phases of the mixture are established viz; binary gas (unsegregated),
segregation liquid and segregation crystal. Their ranges of existence are
mapped out as a function of the system's primary control parameters using a
number of measures based on Voronoi tessellation. We study the associated
transitions and show that segregation can be suppressed is the total filling
fraction of the granular layer, , is decreased below a critical value,
, or if the dimensionless acceleration of the driving, , is
increased above a value .Comment: 12 pages, 12 figures, submitted to Phys. Rev.
Nanogold-based materials in medicine: from their origins to their future.
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine
Marine polysaccharide multilayers: PH responsive systems for the surface modification of tissue engineering scaffolds
[Excerpt] The success of some polymeric scaffolds for Tissue Engineering is hindered by its surface chemistry, which in many cases leads to a significant foreign body response. To overcome this, the present project intend to explore a strategy of surface modification through electrostatic self-assembly, first reported in the 1990s, by the construction of multilayered systems by assembling a polycation and a polyanion in an alternate fashion. [...]info:eu-repo/semantics/publishedVersio
Ising-type Magnetic Anisotropy in CePdAs
We investigated the anisotropic magnetic properties of CePdAs by
magnetic, thermal and electrical transport studies. X-ray diffraction confirmed
the tetragonal ThCrSi-type structure and the high-quality of the single
crystals. Magnetisation and magnetic susceptibility data taken along the
different crystallographic directions evidence a huge crystalline electric
field (CEF) induced Ising-type magneto-crystalline anisotropy with a large
-axis moment and a small in-plane moment at low temperature. A detailed CEF
analysis based on the magnetic susceptibility data indicates an almost pure
CEF ground-state doublet with the dominantly
and the doublets at 290 K and 330
K, respectively. At low temperature, we observe a uniaxial antiferromagnetic
(AFM) transition at K with the crystallographic -direction being
the magnetic easy-axis. The magnetic entropy gain up to reaches almost
indicating localised -electron magnetism without significant
Kondo-type interactions. Below , the application of a magnetic field along
the -axis induces a metamagnetic transition from the AFM to a
field-polarised phase at T, exhibiting a text-book example
of a spin-flip transition as anticipated for an Ising-type AFM.Comment: 9 Pages, 8 figure
Port-Hamiltonian formulation of nonlinear electrical circuits
We consider nonlinear electrical circuits for which we derive a port-Hamiltonian formulation. After recalling a framework for nonlinear port-Hamiltonian systems, we model each circuit component as an individual port-Hamiltonian system. The overall circuit model is then derived by considering a port-Hamiltonian interconnection of the components. We further compare this modeling approach with standard formulations of nonlinear electrical circuits
Surface potential change in bioactive polymer during the process of biomimetic apatite formation in a simulated body fluid
A bioactive polyethylene substrate can be produced by incorporation of sulfonic functional groups (-SO3H) on its surface and by soaking in a calcium hydroxide saturated solution. Variation of the surface potential of the polyethylene modified with -SO3H groups with soaking in a simulated body fluid (SBF) was investigated using a laser electrophoresis zeta-potential analyzer. To complement the study using laser electrophoresis, the surface was examined by X-ray photoelectron spectroscopy (XPS), thin film X-ray diffraction (TF-XRD), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive electron X-ray spectroscopy (EDS). Comparing the zeta potential of sulfonated and Ca(OH)2-treated polyethylene with its surface structure at each interval of these soaking times in SBF, it is apparent that the polymer has a negative surface potential when it forms -SO3H groups on its surface. The surface potential of the polymer increases when it forms amorphous calcium sulfate. The potential decreases when it forms amorphous calcium phosphate, revealing a constant negative value after forming apatite. The XPS and zeta potential analysis demonstrated that the surface potential of the polyethylene was highly negatively charged after soaking in SBF for 0.5 h, increased for higher soaking times (up to 48 h), and then decreased. The negative charge of the polymer at a soaking time of 0.5 h is attributed to the presence of -SO3H groups on the surface. The initial increase in the surface potential was attributed to the incorporation of positively charged calcium ions to form calcium sulfate, and then the subsequent decrease was assigned to the incorporation of negatively charged phosphate ions to form amorphous calcium phosphate, which eventually transformed into apatite. These results indicate that the formation of apatite on bioactive polyethylene in SBF is due to electrostatic interaction of the polymer surface and ions in the fluid
Empathic forecasting: How do we predict other people's feelings?
When making affective forecasts, people commit the impact bias. They overestimate the impact an emotional event has on their affective experience. In three studies we show that people also commit the impact bias when making empathic forecasts, affective forecasts for someone else. They overestimate the impact an emotional event has on someone else's affective experience (Study 1), they do so for friends and strangers (Study 2), and they do so when other sources of information are available (Study 3). Empathic forecasting accuracy, the correlation between one person's empathic forecast and another person's actual affective experience, was lower than between-person forecasting correspondence, the correlation between one person's empathic forecast and another person's affective forecast. Empathic forecasts do not capture other people's actual experience very well but are similar to what other people forecast for themselves. This may enhance understanding between people
Formation of bone-like apatite on polymeric surfaces modified with -SO3H groups
Sulfonic groups (-SO3H) were covalently attached on different polymeric surfaces
enabling them to induce apatite nucleation, for developing bioactive apatite-polymer composites with
a bonelike 3-dimensional structure. High molecular weight polyethylene (HMWPE) and
ethylene-co-vinyl alcohol co-polymer (EVOH) were used. The polymers were soaked in two types of
sulphate-containing solutions with different concentrations, sulphuric acid (H2SO4) and
chlorosulfonic acid (ClSO3H). To incorporate calcium ions into to the sulfonated polymers, the
samples were soaked in a saturated Ca(OH)2 solution for 24 hours. After soaking of the samples in a
simulated body fluid (SBF), formation of an apatite layer on both surfaces was observed. The results
obtained prove the validity of the proposed concept and show that the -SO3H groups are effective on
inducing apatite nucleation on the surface of these polymers.(undefined
- …