research

Ising-type Magnetic Anisotropy in CePd2_2As2_2

Abstract

We investigated the anisotropic magnetic properties of CePd2_2As2_2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2_2Si2_2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large cc-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure ±5/2\langle\pm5/2 \rvert CEF ground-state doublet with the dominantly ±3/2\langle\pm3/2 \rvert and the ±1/2\langle\pm1/2 \rvert doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at TN=14.7T_N=14.7 K with the crystallographic cc-direction being the magnetic easy-axis. The magnetic entropy gain up to TNT_N reaches almost Rln2R\ln2 indicating localised 4f4f-electron magnetism without significant Kondo-type interactions. Below TNT_N, the application of a magnetic field along the cc-axis induces a metamagnetic transition from the AFM to a field-polarised phase at μ0Hc0=0.95\mu_0H_{c0}=0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.Comment: 9 Pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions