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a b s t r a c t

We consider nonlinear electrical circuits for which we derive a port-Hamiltonian
formulation. After recalling a framework for nonlinear port-Hamiltonian systems, we
model each circuit component as an individual port-Hamiltonian system. The overall
circuit model is then derived by considering a port-Hamiltonian interconnection of the
components. We further compare this modeling approach with standard formulations
of nonlinear electrical circuits.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Port-Hamiltonian system models encompass a very large class of nonlinear physical systems [10,22] and arise from
ort-based network modeling of complex lumped parameter systems from various physical domains, such as, for instance,
echanical and electrical systems. Modeling by port-Hamiltonian systems has gained a lot of attention, see, for instance,

he surveys [10,21]. Tremendous progress has been recently made in port-Hamiltonian modeling of constrained dynamical
ystems, which leads to differential–algebraic equations [4,12,13,15,21]. This enables to apply the framework to modeling
f multibody systems with holonomic and non-holonomic constraints as well as electrical circuits. Examples of the
atter class has been considered from a port-Hamiltonian point of view in [10,20,21,25]. However, an approach to
lectrical circuits has been only made for the case where the circuit contains only capacitances and inductances [6].
he recent progress in port-Hamiltonian differential–algebraic equations however allows to treat a by far wider class
f electrical circuits. This is exactly the purpose of this article, where we consider a variety of electrical components,
uch as resistances, capacitances, inductances, diodes, transformers, transistors, current sources and voltage sources from
port-Hamiltonian perspective. Thereafter, we consider the circuit interconnection structure by utilizing the underlying
raph of the given electrical circuit. This gives rise to a port-Hamiltonian model, which only incorporates the Kirchhoff
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laws. Finally, the port-Hamiltonian model of the electrical circuit is obtained by an interconnection with the individual
port-Hamiltonian systems representing the components.

We will compare the resulting dynamical system with well-known formulations of nonlinear electrical circuits like the
charge/flux-oriented) modified nodal analysis and the modified loop analysis.

. Port-Hamiltonian systems and their interconnections

.1. Port-Hamiltonian DAE systems

We review some basics in port-Hamiltonian differential–algebraic equations (DAEs) from [12,13]. An important concept
s that of the Dirac structure, which describes the power preserving energy-routing of the system. In a very general setting,
Dirac structure on a manifold M is defined [8, Def. 2.2.1] as a certain subbundle of D ⊂ TM⊕T ∗M (i.e., the direct sum
f the tangent bundle and co-tangent bundle of M). It turns out that, even for nonlinear circuits, this general definition

is not needed, and we may introduce Dirac structures only for the simple case where M = Rn (which gives rise to the
identification T ∗Rn ∼= TRn ∼= Rn

× Rn) and D ⊂ Rn
× Rn is a subspace.

Definition 2.1 (Dirac Structure). A subspace D ⊂ Rn
× Rn is called a Dirac structure, if for all f , e ∈ Rn holds

(f , e) ∈ D ⇐⇒ ∀ (f̂ , ê) ∈ D : e⊤ f̂ + ê⊤f = 0.

We will also write (f , e) ∈ D ⊂ F × E , where F denotes the space of flows and E = Rn ∼= F∗ denotes the space of
efforts. A useful characterization of Dirac structures is the following.

Proposition 2.2 ([8, Prop. 1.1.5]). A subspace D ⊂ Rn
× Rn is a Dirac structure if, and only if, there exist K , L ∈ Rn×n with

KL⊤
+ LK⊤

= 0 and rk [K L] = n, such that

D =
{
(f , e) ∈ Rn

× Rn
| Kf + Le = 0

}
. (1)

Now we introduce a relation describing the energy storage of the system and is called Lagrange submanifold. Again,
the general definition of Lagrange submanifold as found in [11, p. 568] is not needed for nonlinear circuits. It suffices to
consider the case of submanifolds of Rn

× Rn. Typically, the manifolds are assumed to be smooth. This can however be
relaxed, and we may consider less-smooth manifolds for our purposes.

Definition 2.3 (Lagrange Submanifold). A submanifold L ⊂ Rn
× Rn is called Lagrange submanifold of Rn

× Rn, if for all
x ∈ L and (v1, v2) ∈ Rn

× Rn holds

(v1, v2) ∈ TxL ⇐⇒ ∀(w1, w2) ∈ TxL : v⊤

1 w2 − v⊤

2 w1 = 0.

Hereby, TxL ⊂ Rn
× Rn stands for tangent space of L at x ∈ L.

In the following we show that gradient fields induce Lagrange submanifolds.

Proposition 2.4. Let Q : Rn
→ Rn be continuously differentiable. Then the submanifold consisting of the graph of Q , i.e.,

LQ := {(x,Q (x)) ∈ Rn
× Rn

| x ∈ Rn
}

is a Lagrange submanifold if, and only if, Q is a gradient field. In other words, there exists some twice continuously differentiable
function H : Rn

→ R such that ∇H = Q .

Proof. Using that Rn is simply connected, the case of smooth Q follows from [11, Prop. 22.12]. The less smooth case
follows by a straightforward modification of the proof of [11, Prop. 22.12]. □

The case where a Lagrangian submanifold is a subspace deserves special attention.

Proposition 2.5 ([12, Prop. 5.2]). A subspace L ⊂ Rn
× Rn is a Lagrangian submanifold if, and only if,

L =
{
(f , e) ∈ Rn

× Rn
| S⊤f = P⊤e

}
for some matrices S, P ∈ Rn×n with S⊤P = P⊤S and rk [S⊤ P⊤

] = n.

Another concept needed for port-Hamiltonian systems is that of the resistive relation, which represents the internal
energy dissipation of the system. It is defined as a relation on the space of resistive flows FR and space of resistive efforts
ER [10, Sec. 2.4]. In our setting, both ER and FR will be again Rn.

Definition 2.6 (Resistive Relation). A relation R ⊂ Rn
× Rn is called resistive, if

∀ (fR, eR) ∈ R : e⊤

RfR ≤ 0.
2
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Fig. 1. Visual representation of a pH system.

Having defined Dirac structures, Lagrange submanifolds and resistive relations, we are now ready to introduce port-
Hamiltonian systems. Again note this class can be defined in a more general setting by using manifolds [10,13]. We ‘boil
this down’ to the setup which is needed for electrical circuits.

Definition 2.7 (Port-Hamiltonian (pH) System). Let nL, nR, nP ∈ N0 and denote

FL = EL = RnL , FR = ER = RnR , FP = EP = RnP .

A port-Hamiltonian (pH) system is a triple (D,L,R), where D ⊂ (FL × FR × FP ) × (EL × ER × EP ) is a Dirac structure
(see Definition 2.1), L ⊂ FL × EL is a Lagrange submanifold (see Definition 2.3) and R ⊂ FR × ER a resistive relation
(see Definition 2.6).

The elements of FL, EL, FR, ER, FP , EP are, accordingly, called the energy-storing flows/efforts, resistive flows/efforts
and external flows/efforts.

The dynamics of the pH system are specified by the differential inclusion

(− d
dt x(t), fR(t), fP (t), eL(t), eR(t), eP (t)) ∈ D, (x(t), eL(t)) ∈ L, (fR(t), eR(t)) ∈ R.

Note that, in this paper, we do not investigate any solvability theory of the resulting equations (see Fig. 1).

2.2. Interconnection of port-Hamiltonian systems

A key property of pH systems is that this class is closed under power-conserving interconnection. Different methods
of how to design such interconnections are for example elucidated in [3,7,10,26]. The interconnection we will be using
for the electrical circuits follows the ideas presented in [10]. Interconnection is based on the assumption that each system
has two kinds of external flows and efforts, namely specific and to-be-linked ones, where the latter ones are belonging
to the same space for each Dirac structure.

Definition 2.8 (Interconnection of pH Systems). For i = 1, 2, let (Di,Li,Ri) be two pH systems with specific flow and effort
spaces,

Fi =FLi × FRi × (FPexti × FPlink), Ei = FLi × ERi × (EPexti × EPlink),

of which the spaces belonging to the external flows and efforts are subdivided into a specific external part, and
a to-be-linked part. We define the interconnection of (D1,L1,R1) and (D2,L2,R2),

(D1,L1,R1) ◦ (D2,L2,R2) := (D,L,R),

with respect to (FPlink, EPlink) as the pH system given by

D :=
{
((fL1, fL2), (fR1, fR2), (fP1, fP2), (eL1, eL2), (eR1, eR2), (eP1, eP2))

| ∃(flink, elink) ∈ FPlink × EPlink : (fL1, fR1, fP1, flink, eL1, eR1, eP1, elink) ∈ D1

∧ (fL2, fR2, fP2,−flink, eL2, eR2, eP2, elink) ∈ D2
}
,

and
L = { ((fL1, fL2), (eL1, eL2)) ∈ (FL1 × FL2) × (EL1 × EL2) | (fL1, eL1) ∈ L1 ∧ (fL2, eL2) ∈ L2},

R = { ((fR1, fR2), (eR1, eR2)) ∈ (FR1 × FR2) × (ER1 × ER2) | (fR1, eR1) ∈ R1 ∧ (fR2, eR2) ∈ R2}.

The above constructed set D is indeed a Dirac structure [10, Chap. 6]. It is obvious that L is a Lagrange submanifold
and R is a resistive relation. Hence, the interconnection of pH systems results in a pH system (see Figs. 2 and 3).

Next we introduce the Cartesian product of pH systems, which simply means that several coexisting pH systems are
united to one pH system. In terms of Definition 2.8, it means that several pH systems are interconnected with trivial linking
ports. That is, for pH systems (D ,L ,R ) and (D ,L ,R ) we add artificial and trivial linking ports F = E = {0}
1 1 1 2 2 2 link link

3
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(

Fig. 2. Composition of two Dirac structures.

Fig. 3. Interconnection of two pH systems.

which do not affect the dynamic behavior) and interconnect these systems with respect to this trivial port (FPlink, EPlink).
A coupling of this kind will be denoted by (D1,L1,R1) × (D2,L2,R2). We further inductively define

n

×
i=1

(Di,Li,Ri) :=

(n−1

×
i=1

(Di,Li,Ri)

)
× (Dn,Ln,Rn).

2.3. Port-Hamiltonian systems on graphs

Now we consider interconnections of pH systems, which are defined via graphs [23]. This will lead us to the notions
of Kirchhoff–Dirac structure and Kirchhoff–Lagrange manifold. Later we will show that such interconnections correspond to
the Kirchhoff laws in electrical circuits. To this end, we introduce some basic graph theoretical notions from [9].

Definition 2.9 (Graphs and Subgraphs). A directed graph is a quadruple G = (V , E, init, ter) consisting of a vertex set V , a
edge set E and two maps init, ter : E → V assigning to each edge e an initial vertex init(e) and a terminal vertex ter(e). The
edge e is said to be directed from init(e) to ter(e). G is said to be loop-free, if init(e) ̸= ter(e) for all e ∈ E. Let V ′

⊂ V and
E ′

⊂ E with

E ′
⊂ E|V ′ := {e ∈ E : init(e) ∈ V ′

∧ ter(e) ∈ V ′
}.

Then the triple (V ′, E ′, init|E′ , ter|E′ ) is called a subgraph of G. If E ′
= E|

′

V , then the subgraph is called the induced subgraph
on V ′. If V ′

= V , then the subgraph is called spanning. Additionally a proper subgraph is one where E ′
̸= E. G is called

finite, if V and E are finite.

The notion of a path in a directed graph G = (V , E, init, ter) is quite descriptive. However, since a path may also go
through an edge in reverse direction, we define for each e ∈ E an additional edge −e ̸∈ E with init(−e) = ter(e) and
ter(−e) = init(e).

Definition 2.10 (Paths, Connectivity, Cycles, Forests and Trees). Let G = (V , E, init, ter) be a directed finite graph. An r-tuple
e = (e1, . . . , er ) ∈ (E ∪ −E)r is called a path from v to w, if

init(e1), . . . , init(er ) are distinct,
ter(ei) = init(ei+1) ∀i ∈ {1, . . . , r − 1},
init(e1) = v ∧ ter(er ) = w.

A cycle is a path from v to v. Two vertices v,w are connected, if there is a path from v to w. This gives an equivalence
relation on the vertex set. The induced subgraph on an equivalence class of connected vertices gives a component of the
graph. A graph is called connected, if there is only one component.

A subgraph K = (V , E ′, init|E′ , ter|E′ ) of a directed graph G = (V , E, init, ter) is called a spanning forest in G, if K does
not contain any cycles and is maximal with this property, that is, K is not a proper subgraph of a subgraph of G which
does not contain any cycles. A subgraph K is called tree, if it is a forest and connected.
4
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In the context of electrical circuits, finite and loop-free directed graphs are of major importance. These allow to
ssociate a special matrix [1, Sec. 3.2].

efinition 2.11 (Incidence Matrix). Let G = (V , E, init, ter) be a finite and loop-free directed graph. Let E = {e1, . . . , em}

nd V = {v1, . . . , vn}. Then the incidence matrix of G is A0 ∈ Rn×m with

ajk =

⎧⎨⎩
1 init(ek) = vj,

−1 ter(ek) = vj,

0 otherwise.

G has k ∈ N components if, and only if, rk A0 = n − k [1, p. 140]. This allows to remove up to k rows from A0 such
that a matrix with same rank is obtained. The choice of these to-be-deleted rows has to be done in a special way: One
has to choose a row set, which corresponds to a vertex set S that contains at most one vertex per component to G. This
deletion plays a crucial role in the following definition of a special Dirac structure and Lagrange submanifold.

Definition 2.12 (Kirchhoff–Dirac Structure, Kirchhoff–Lagrange Submanifold). Assume that G = (V , E, init, ter) is a finite and
loop-free directed graph with incidence matrix A0 ∈ Rn×m. Let G1, . . . , Gk be the components of G and let V1, . . . , Vk ⊂ V
be the corresponding vertex sets. Let S ⊂ V such that S contains at most one vertex from each component, that is

∀ s, s′ ∈ S, i ≤ k : v, v′
∈ Vi ⇒ v = v′. (2)

Let A ∈ R(n−k)×m be constructed from A0 ∈ Rn×m by deleting the rows corresponding to the vertices from S. The
Kirchhoff–Dirac structure of G is

DS
K (G) :=

{
(j, i, φ, u) ∈ Rn−|S|

× Rm
× Rn−|S|

× Rm
⏐⏐⏐⏐ [ I A

0 0

](
j
i

)
+

[
0 0
A⊤

−I

](
φ

u

)
= 0

}
. (3)

Assume that S = {v1, . . . , v|S|} (which is – by a reordering of the vertices – no loss of generality). Then the Kirchhoff–
Lagrange submanifold of G with respect to S is

LS
K (G) := {0} × Rn−|S|

⊂ Rn−|S|
× Rn−|S|. (4)

Remark 2.13. By Proposition 2.2, DS
K (G) in (3) is a Dirac structure, whereas Proposition 2.5 implies that LS

K (G) in (4) is
a Lagrange submanifold of Rn−|S|

× Rn−|S|.
The concepts of Definition 2.12 allow to introduce the pH system (DS

K (G),L
S
K (G), {0}) with dynamics

(− d
dt q(t), i(t), φ(t), u(t)) ∈ DS

K (G), (q(t), φ(t)) ∈ LS
K (G). (5)

Then, by the equivalence of (q(t), φ(t)) ∈ LS
K (G) to q(t) = 0 and φ(t) ∈ Rn−|S|, we see that (5) holds, if, and only if,

q(t) = 0 ∧ Ai(t) = 0 ∧ A⊤φ2(t) = −u(t).

In particular, i(t) ∈ ker A and u(t) ∈ im A⊤. In the context of electrical circuits, this will indeed represent Kirchhoff’s
current and voltage law [18, Thm. 4.5 & Thm. 4.6]. The choice of S can be interpreted as the set of grounded vertices. The
quantities q, i, φ and u can respectively be thought as the vertex charges, the edge currents, the vertex potentials, and
the edge voltages.

Note that (5) is indeed a pH system. However, this system is of rather pathological nature, since it does not contain
any ‘true dynamics’, as the differential variable q is nulled by the Lagrange submanifold. Note that these ‘true dynamics’
come into play later on, when we interconnect with dynamic circuit elements like capacitances and inductances.

In the terminology of [23], DS
K (G) corresponds to the Kirchhoff–Dirac structure of a graph with |S|= ∅. Moreover,

a Dirac structure similar to (3) has been used in [20], with the main difference that in our present case all nodes are
considered to be ‘boundary nodes’ in the nomenclature of [20].

We briefly present an alternative (slightly less straight-forward) construction of pH systems on graphs, namely by
means of cycles instead to vertices. For a given spanning forest T of a loop-free directed graph G with n edges, m vertices
and k connected components, the minimality property yields that the incorporation of any edge of G not belonging to T
(called chord) results in a subgraph with exactly one cycle. Consequently, the set of edges in the complement of T in G
leads to a set C = {C1, . . . , Cm−n+k} of cycles, the so-called fundamental cycles (see [1, p. 148] & [9, p. 26]). We equip each
fundamental cycle with the orientation of its corresponding chord [1, p. 148] and consider the associated fundamental
cycle matrix B ∈ R(m−n+k)×m which is defined entrywise by (cf. [1, Sec. 3.3])

bjl =

⎧⎨⎩
1 el ∈ Cj and the orientations agree,
−1 el ∈ Cj and the orientations do not agree,

0 otherwise.

5
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T

Fig. 4. Visual representation of the Dirac structure D resulting from the interconnection (8).

his enables us to introduce the following Dirac structure and Lagrange submanifold

D′

K (G) :=

{
(ϕ, u, ι, i) ∈ Rm−n+k

× Rm
× Rm−n+k

× Rm
⏐⏐⏐⏐ [ I B

0 0

](
ϕ

u

)
+

[
0 0
B⊤

−I

](
ι

i

)
= 0

}
,

L′

K (G) := {0} × Rn−m+k,

(6)

which form the pH system (D′

K (G),L
′

K (G), {0}) with dynamics

(− d
dtψ(t), i(t), ι(t), u(t)) ∈ D′

K (G), (ψ(t), ι(t)) ∈ L′

K (G), (7)

from which, analogous to Remark 2.13, one can derive that (7) is equivalent to ψ(t) = 0, Bu(t) = 0 and i(t) = B⊤ι. Since
im B = ker A⊤ [18, Thm. 4.4], the relations u(t) ∈ ker B = 0 and i(t) ∈ im B⊤ respectively represent Kirchhoff’s voltage
and current law. The quantities ψ , u, ι and i can respectively be thought as the cycle fluxes, the edge voltages, the cycle
currents and the edge currents.

3. Electrical circuits as port-Hamiltonian systems

Our essential idea to port-Hamiltonian modeling of electrical circuits is to extend the tuple of voltages across and
currents through the edges – in the case where we consider a vertex-based formulation of the Kirchhoff laws – by vertex
charges and potentials, and – in the case where we consider a loop-based formulation of the Kirchhoff laws – by cycle
fluxes and cycle currents, along with an accordant modeling of the graph interconnection structure by means of the
approach in the preceding section. The electrical components are modeled by separate pH systems, and thereafter coupled
with the one representing the interconnection structure (see Fig. 4).

The circuits may be composed of two-terminal andmulti-terminal components. We will speak of ℓt-terminal components,
with ℓt ∈ N denoting the number of terminals [27]. Each ℓt-terminal component connects ℓt vertices of the electrical
circuit through its terminals. For instance, a resistance has two terminals, whereas a transistor has three terminals, and
a transformer has four terminals. To regard an electrical circuit as a graph (see Fig. 5), we need to replace the ℓt-terminal
components by ℓp edges between the vertices they connect, for some ℓp ∈ N, which we call the number of ports. Such
a device is also called a ℓp-port component. This replacement is displayed in Fig. 5. The direction assigned to each edge
is not a physical restriction but rather a definition of the positive direction of the corresponding voltage and current [18].
The physical properties of the electrical components will be reflected by port-Hamiltonian dynamics on these edges. The
replacement of an ℓt-terminal component by ℓp edges between vertices, i.e., by a graph, is subject to physical modeling.
For further details on terminals, ports and their relation, we refer to [27].

To be more precise, for ℓp, ℓt ∈ N, an ℓt-terminal component on ℓp edges will be regarded as a pH system (D,L,R),
where D ⊂ RnS+nR+ℓp ×RnS+nR+ℓp , with ℓp = nS + nR for some nS, nR ∈ N0. We associate to D a graph G = (V , E, init, ter)
with |V |= ℓt and |E|= ℓp (cf. Fig. 6). The external flow and effort variables will always represent the current through
[18, Def. 3.2] and the voltage along [18, Def. 3.6] the corresponding edges, respectively.

3.1. Electrical circuits as interconnections of port-Hamiltonian systems

Let an electrical circuit consisting of N electrical components (Di,Li,Ri)i∈{1,...,N}, each with ℓp,i ports, be given, with
N ∈ N and let (Gi)i∈{1,...,N} = (Vi, Ei, initi, teri)i∈{1,...,N} be the respective graphs resulting from the physical modeling of the
ℓp,i-port components (see Fig. 6), where we assume that the edge sets E1, . . . , EN are disjoint. We define the underlying
graph of the circuit G (see Fig. 5) as

G = (V , E, init, ter) :=

(
N⋃

Vi,

N⋃
Ei, init, ter

)
,

i=1 i=1

6
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s
t

Fig. 5. Obtaining the underlying graph of the electrical circuit.

Fig. 6. Replacing an ℓt -terminal component by a graph with ℓp edges.

with init(e) = initi(e) and ter(e) = teri(e) if e ∈ Ei for some i ∈ {1, . . . ,N} and let V = {v1, . . . , vn}, E = {e1, . . . , em} for
ome n,m ∈ N. Further, let A0 ∈ Rn×m be the incidence matrix associated to G and let S ⊂ V with property (2) represent
he vertices grounded in the circuit. We model the dynamics of the electrical circuits as the dynamics of the pH system

(D,L,R) := (DS
K (G),L

S
K (G), {0}) ◦

( N

×
i=1

(Di,Li,Ri)

)
(8)

(see Fig. 4) where the interconnection is performed with respect to the flow and effort spaces

(Flink, Elink) =

( N

×
i=1

RmPi ,

N

×
i=1

RmPi

)
= (Rm,Rm)

corresponding to the port variables associated to the currents and voltages of the ℓp-port components.

3.2. Physical modeling of circuit components as port-Hamiltonian systems

We present a couple of ‘prominent’ electrical components from a port-Hamiltonian viewpoint; among them are
capacitances, inductances, resistances, diodes, transformers, transistors and sources. Note that this list is by no means
complete. In principle, our approach also allows to incorporate components which are modeled by partial differential
equations, such as transmission lines and refined models of semiconductor devices. This involves a further generalization
of pH systems on infinite-dimensional spaces and particularly leads to the notion of Stokes–Dirac structure, see [5,16,17].

Throughout this section, i will denote currents and u will denote voltages. An oftentimes used Dirac structure will be,
for ℓp ∈ N,

Dℓp =

{(
−i
i
u
u

)
∈ R4ℓp

⏐⏐⏐⏐ i, u ∈ Rℓp
}
. (9)

It can easily verified that this is indeed a Dirac structure. The variable i stands for the vector of currents, whereas u is the
vector of voltages in the component. Note that a copy of the voltage and negative of the current vector is required, since
it is later on eliminated by the interconnection according to Definition 2.8.

3.2.1. Capacitances
Let HC ∈ C1(Rℓp ,R). A capacitance with ℓp ports is modeled as a pH system (DC ,LC ,RC ), where DC = Dℓp with Dℓp as

in (9), RC = {0}, and

L =
{
(u , q ) ∈ R2ℓp | q = ∇H (u )

}
.
C C C C C C

7
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Fig. 7. Deriving the underlying graph of a capacitance, conductance, ideal diode, PN-junction diode, inductance, resistance, or sources.

Fig. 8. Capacitance: circuit symbol.

Fig. 9. Inductance: circuit symbol.

he dynamics consequently read

(− d
dt qC (t), iC (t), uC (t), uC (t)) ∈ DC , (qC (t), uC (t)) ∈ LC .

Here, qC represents the charge of the capacitance and the Hamiltonian HC represents the energy storage function of the
system. From this pH system, one can derive

iC (t) =
d
dt qC (t), uC (t) = ∇HC (qC (t)).

f the capacitance has two terminals, then we obtain a conventional capacitance with one port as in Fig. 7 (see
igs. 8 and 9).

.2.2. Inductances
Let HL ∈ C1(Rℓp ,R). An inductance with ℓp ports is modeled as a pH system (DL,LL,RL) with

DL =

{(
−uL
iL
iL
uL

)
∈ R4ℓp

⏐⏐⏐⏐ uL, iL ∈ Rℓp
}

nd

LL =
{
(ψL, iL) ∈ R2ℓp | iL = ∇HL(ψL)

}
, RL = {0}.

he dynamics are now given by

(− d
dtψL(t), iL(t), iL(t), uL(t)) ∈ DL, (ψL(t), iL(t)) ∈ LL,

Here, ψL represents the magnetic flux of the inductance and the Hamiltonian HL ∈ C1(Rℓp ,R) represents the energy storage
unction of the system. From this pH system, one can derive

uL(t) =
d
dtψL(t), iL(t) = ∇HL(ψL(t)).

If the inductance has two terminals, then we obtain a conventional inductance with one port as in Fig. 7.

3.2.3. Conductances and resistances
Let RR ⊂ Rℓp × Rℓp be a resistive relation. Consider the pH system (DR ,LR ,RR ), where DR = Dℓp with Dℓp as in (9),

LR = {0}. The dynamics are specified by

(−iR (t), iR (t), uR (t), uR (t)) ∈ DR , (−iR (t), uR (t)) ∈ RR , (10)

If, for some accretive function g : Rℓp → Rℓp (that is, φ⊤
R g(φR ) ≥ 0 for all φR ∈ Rℓp ), RR reads

RR =
{
(−iR , uR ) ∈ R2ℓp |iR = g(uR )

}
,

hen (10) leads to iR (t) = g(uR (t)). That is, (DR ,LR ,RR ) describes a conductance with ℓp ports. On the other hand, if for
ome accretive function r : Rℓp → Rℓp ,

RR =
{
(−iR , uR ) ∈ R2ℓp |uR = r(iR )

}
hen (10) leads to u (t) = r(i (t)), i.e. (D ,L ,R ) models a resistance with ℓ ports.
R R R R R p

8
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Fig. 10. Resistance/conductance: circuit symbol.

Fig. 11. Circuit symbol of a diode.

Fig. 12. Circuit symbol of a transformer.

Fig. 13. Deriving the underlying graph of a transformer.

If the conductance/resistance has two terminals, then we obtain a conventional conductance/resistance with one port
as in Fig. 10 (see Fig. 11).

Remark 3.1. Resistances form a pathological case of a pH system, since the underlying Lagrange submanifold is trivial
(cf. Remark 2.13). Therefore, the ‘dynamics’ of the pH system are actually ‘statics’. The same holds for the models diodes,
transformers and transistors which are discussed in the sequel.

3.2.4. Ideal and PN-junction diodes
An ideal diode is modeled as a two-terminal component (DD,LD,RD) with one port (see Fig. 7), and dynamics

(−iD(t), iD(t), uD(t), uD(t)) ∈ DD, (jD(t), φD(t)) ∈ RD,

where DD = D1 with D1 as defined in (9), LD = {0} and

RD =
{
(−iD, uD) ∈ R2

| iDuD = 0 ∧ iD ≤ 0 ∧ uD ≤ 0
}
.

From this pH system, one can derive that

(iD(t), uD(t)) ∈
(
{0} × R≤0

)
∪
(
R≥0 × {0}

)
.

A PN-junction diode is modeled as a one-port component (DD,LD,RD) with DD and LD as for the ideal diode, and the
resistive relation is, for some constants a, b > 0, given by

RD =

{
(−iD, uD) ∈ R2

| iD = a
(
e

uD
b − 1

)}
.

rom the dynamics of this pH system, one can derive the characteristic equation [14, Eq. (39.46)]

iD(t) = a
(
e

uD (t)
b − 1

)
.

The PN-junction diode serves as an approximation for an ideal diode. In a certain sense, the behavior of a PN-junction
diode indeed tends to that of the ideal diode, if b → 0 (see Fig. 12).

3.2.5. Transformers
A transformer is modeled as a four-terminal component with two ports, see Fig. 13. It is described by the pH system

(D ,L ,R ), where we use the Dirac structure D = D with D as defined in (9) and trivial Lagrange submanifold
T T T T 2 2

9
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Fig. 14. Circuit symbol of a NPN transistor.

Fig. 15. Deriving the underlying graph of an NPN transistor.

LT = {0}. The dynamics are given by

(−iT 1(t),−iT 2(t), iT 1(t), iT 2(t), uT 1(t), uT 2(t), uT 1(t), uT 2(t)) ∈ DT ,

(−iT 1(t),−iT 2(t), uT 1(t), uT 2(t)) ∈ RT ,

with, for some T ∈ R,

RT =
{
(−iT 1,−iT 2, uT 1, uT 2) ∈ R4

; | TiT 1 = −iT 2, uT 1 = TuT 2
}
.

From this pH system, one can derive TiT 1(t) = −iT 2(t) and uT 1(t) = TuT 2(t), which means that a transformer is
power-conserving component (see Fig. 14).

.2.6. NPN transistors
A transistor is a component with three terminals, which are called emitter, basis and collector. We replace this by

graph with two edges, which are respectively located between basis and collector, and basis and emitter, see Fig. 15.
he behavior of a transistor of type NPN is often modeled by the Ebers–Moll model [24, Eqs. (5.26) & (5.27)], which can,
n a certain voltage and current range around zero, be summarized by the equations

iC (t) = iS

(
e
uBE (t)
VT − 1

)
−

iS
αR

(
e
uBC (t)
VT − 1

)
,

iE(t) =
iS
αF

(
e
uBE (t)
VT − 1

)
− iS

(
e
uBC (t)
VT − 1

)
,

(11)

or some constants αF ∈
[ 50
51 ,

1000
1001

]
, αR ∈

[ 1
100 ,

1
2

]
, iS ∈ [10−15, 10−12

], VT ≈
1
40 [24, pp. 382–394]. Hereby, iC (t), iE(t),

uBE(t), uBC (t) respectively denote the collector current, emitter current, basis–emitter voltage and basis–collector voltage.
Note that, by the Kirchhoff laws, the basis current fulfills iB(t) = iE(t) − iC (t) and the collector emitter voltage is given
y uCE(t) = uBE(t) − uBC (t). We model an NPN transistor as a ‘resistive’ two-port component (DN ,LN ,RN ) on two edges,
here DN = D2 with D2 as defined in (9), LN = {0} and

RN =

⎧⎪⎪⎨⎪⎪⎩(iC ,−iE, uBC , uBE) ∈ R4
⏐⏐⏐⏐iC = iS

(
e
uBE
VT − 1

)
−

iS
αR

(
e
uBC
VT − 1

)
,

iE =
iS
αF

(
e
uBE
VT − 1

)
− iS

(
e
uBC
VT − 1

)
,

⎫⎪⎪⎬⎪⎪⎭ ∩ U0,

where U0 ⊂ R4 is a neighborhood of the origin. The dynamics of the system read

(iC (t),−iE(t),−iC (t), iE(t), uBC (t), uBE(t), uBC (t), uBE(t)) ∈ DN , (iC (t),−iE(t), uBC (t), uBE(t)) ∈ RN ,

which implies (11), at least as long as (iC (t),−iE(t), uBC (t), uBE(t)) ∈ U0. Note that we have provided the collector current
iC (t) with another sign, since it is – in contrast to the emitter current and the basis–emitter current – directed contrarily
to the basis–collector current.

Note that, if we choose U0 = R4, then the relation RN is not resistive, since for there may exist quadruples
(i ,−i , u , u ) ∈ R holds i u − i u > 0. However, we can show that R is resistive for a suitable neighborhood
C E BC BE N C BC E BE N

10
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Fig. 16. Circuit symbol of a current source.

Fig. 17. Circuit symbol of a voltage source.

0 ⊂ R4 of the origin. This can be seen as follows: Since for (uBC , uBE) ∈ (R \ {0})2 holds

(
uBC
uBE

)⊤

⎛⎜⎜⎝−
iS
αR

(
e
uBC
VT − 1

)
+ iS

(
e
uBE
VT − 1

)
iS

(
e
uBC
VT − 1

)
−

iS
αF

(
e
uBE
VT − 1

)
⎞⎟⎟⎠

=

(
uBC
uBE

)⊤

⎡⎢⎢⎣−
iS

αRuBC

(
e
uBC
VT − 1

)
iS
uBE

(
e
uBE
VT − 1

)
iS
uBC

(
e
uBC
VT − 1

)
−

iS
αF uBE

(
e
uBE
VT − 1

)
⎤⎥⎥⎦

  
=:A(uBC ,uBE )

(
uBC
uBE

)
.

amely, by using that A(·, ·) has a continuous extension to R2 with

A(0, 0) =
iS
VT

·

[
−

1
αR

1
1 −

1
αF

]
.

By αF ∈
[ 50
51 ,

1000
1001

]
, αR ∈

[ 1
100 ,

1
2

]
, we have αF · αR < 1, which leads to negative definiteness of A(0, 0) =

1
2 (A(0, 0) +

(0, 0)⊤). The continuity of (uBC , uBE) ↦→
1
2 (A(uBC , uBE)+A(uBC , uBE)⊤) implies that there exists some neighborhood U0 ⊂ R4

such that this function takes values in the cone of negative definite matrices on U0. This consequences that, by taking this
neighborhood U0, RN is a resistive relation.

3.2.7. Current and voltage sources
The sources of the electrical circuit represent the ports of the system, that is points at which physical interaction of

the electrical circuit with the environment happens. We may distinguish two types of sources: current sources and voltage
sources, see Figs. 16 and 17. The name indicates which physical variable is controlled or influenced by the environment.
This variable is also denoted as input, while the other is denoted as output. However, this distinction is not relevant for the
geometrical formulation of pH systems (cf. [15]). We unite both classes under the term sources. These have two terminals,
nd, consequently, one port (see Fig. 7). Sources are modeled as a pH system (DS,LS,RS), where the Dirac structure is
S = D1 with D1 as defined in (9), and the Lagrange submanifold and resistive relation are trivial, i.e., LS = RS = {0}.
he dynamics are

(−iS(t), iS(t), uS(t), uS(t)) ∈ DS .

Example 3.2 (AC/DC Converter). We illustrate our methodology by considering an AC/DC converter, which we model
by the electrical circuit shown in Fig. 18. The AC/DC converter consists of a source S = (DS,LS,RS), a transformer
T = (DT ,LT ,RT ), four PN-junction diodes Ji = (DJi ,LJi ,RJi ) for i ∈ {1, . . . , 4}, a capacitor C = (DC ,LC ,RC ), and a
‘sink’ O = (DO,LO,RO) (modeled like a source), which are connected by the vertices v1, . . . , v6 as shown in Fig. 19. The
circuit graph G = (V , E, init, ter) with V = {v1, . . . , v6} and E = {e1, . . . , e9} has two components, and we ground the
nodes below the voltage source and the capacitance, i.e., we choose S = {v2, v3}. Let A ∈ R4×9 be obtained from the
incidence matrix of G by deleting the rows corresponding to the grounded nodes. We arrive at a pH system (D,L,R) as
11
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Fig. 18. AC/DC converter circuit.

Fig. 19. Obtaining the underlying graph of the AC/DC converter.

in (8), whose dynamics read⎛⎜⎜⎜⎜⎜⎝ d
dt

⎛⎜⎜⎜⎝
−q1
−q4
−q5
−q6
−qC

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎝

−iT 1
−iT 2
−iD1
−iD2
−iD3
−iD4

⎞⎟⎟⎟⎟⎟⎠ ,
(

−iV
−iO

)
,

⎛⎜⎜⎜⎝
φ1
φ4
φ5
φ6
uC

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎝
uT 1
uT 2
uD1
uD2
uD3
uD4

⎞⎟⎟⎟⎟⎟⎠ ,
(
uV

uO

)
⎞⎟⎟⎟⎟⎟⎠ ∈ D,

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

−q1
−q4
−q5
−q6
−qC

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝
φ1
φ4
φ5
φ6
uC

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ∈ L,

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
−iT 1
−iT 2
−iD1
−iD2
−iD3
−iD4

⎞⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎝
uT 1
uT 2
uD1
uD2
uD3
uD4

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ ∈ R.

. Comparison with other formulations of electrical circuits

With the attention electrical circuits attracted over the past decades, quite a bunch of ‘standard formulations’ of
he dynamics have emerged. An overview of popular models in the context of DAEs is found in [19]. We compare for
ertain electrical circuits the dynamics of our port-Hamiltonian modeling (8) with other equations used in the modeling
f electrical circuits.

.1. The (charge/flux-oriented) modified nodal analysis

Let an electrical circuit consisting of conductances, inductances, capacitances and sources. Let

(DRi ,LRi ,RRi )i∈{1,...,lR }, (DLi ,LLi ,RLi )i∈{1,...,lL },

(DCi ,LCi ,RCi )i∈{1,...,lC }, (DSi ,LSi ,RSi )i∈{1,...,lS }.

e the pH systems modeling the components as derived in Section 3.1. Let ℓp,R i be the number of ports of the component
odeled by (DRi ,LRi ,RRi ), and let ℓp,Li and ℓp,C i be analogously defined. Moreover, let

mR =

lR∑
i=1

ℓp,R i, mL =

lR∑
i=1

ℓp,Li, mC =

lC∑
i=1

ℓp,R i, mS = lS,

nd introduce

iR =

⎛⎜⎝ iR 1
...

⎞⎟⎠ , iL =

⎛⎜⎝ iL1
...

⎞⎟⎠ , iC =

⎛⎜⎝ iC1
...

⎞⎟⎠ , iS =

⎛⎜⎝ iS1
...

⎞⎟⎠ , i =

⎛⎜⎝iR
iL
iC

⎞⎟⎠ ,

iR mR iLmL iCmC iSmS iS

12
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and analogous notations for uR , uL , uC , uS , u, as well as

qC =

⎛⎜⎝ qC1
...

qCmC

⎞⎟⎠ , ψL =

⎛⎜⎝ ψL1
...

ψLmL

⎞⎟⎠ , g(uR ) =

⎛⎜⎝ g1(uR 1)
...

gmR (uR mR )

⎞⎟⎠ ,
HC (qC ) =

mC∑
i=1

HC i(qC i), HL(ψL) =

mL∑
i=1

HLi(ψLi).

urther, let G = (V , E, init, ter) be the graph induced by the electrical circuit with |V |= n and |E|= m. Let S be the set of
grounded vertices (cf. Definition 2.12), and let A ∈ R(n−|S|)×m be obtained from the incidence matrix of G by deleting the
rows corresponding to the vertices in S. By a suitable reordering, we may sort into edges to the specific components, i.e.,

A =
[
AR AL AC AS

]
,

where the columns of AR ∈ R(n−|S|)×mR , AL ∈ R(n−|S|)×mL , AC ∈ R(n−|S|)×mC and AS ∈ R(n−|S|)×mS respectively repre-
sent the edges corresponding to conductances, inductances, capacitances and sources. For the representation of the
port-Hamiltonian dynamics of the electrical circuit, first note that the Dirac structure of the pH system

mR

×
i=1

(DRi ,LRi ,RRi ) ×

mL

×
i=1

(DLi ,LLi ,RLi ) ×

mC

×
i=1

(DCi ,LCi ,RCi ) ×

mS

×
i=1

(DSi ,LSi ,RSi )

is given by

Dprod =

{ (
−iL,−iC ,−iR , iR , iL, iC ,−iS, iS, iL, uC , uR , uR , uL, uC , uS, uS

)
∈ R2m

× R2m
|

iL, uL ∈ RmL , iC , uC ∈ RmC , iR , uR ∈ RmR , iS, uS ∈ RmS

}
and

DS
K (G) =

{ (
j, iR , iL, iC , iS, φ, uR , uL, uC , uS

)
∈ Rn−|S|

× Rm
× Rn−|S|

× Rm
⏐⏐

⎡⎢⎢⎢⎣
I AR AL AC AS

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

j
iR
iL
iC
iS

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0

−A⊤
R I 0 0 0

−A⊤
L 0 I 0 0

−A⊤
C 0 0 I 0

−A⊤
S 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
φ

uR

uL

uC

uS

⎞⎟⎟⎟⎟⎟⎟⎠ = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

It follows that the Dirac structure of

(DS
K (G),L

S
K (G), {0}) ◦

( N

×
i=1

(Di,Li,Ri)

)
is given by

D =

{(
j,−uL,−iC ,−iR ,−iS, φ, iL, uC , uR , uS

)
∈ Rn−|S|

× Rm
× Rn−|S|

× Rm
⏐⏐

⎡⎢⎢⎢⎣
I 0 AC AR AS

0 0 0 0 0
0 −I 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎝

j
−uL

−iC
−iR
−iS

⎞⎟⎟⎟⎠+

⎡⎢⎢⎢⎢⎢⎢⎣
0 −AL 0 0 0

−A⊤
R 0 0 I 0

−A⊤
L 0 0 0 0

−A⊤
C 0 I 0 0

−A⊤
S 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
φ

iL
uC

uR

uS

⎞⎟⎟⎟⎟⎟⎟⎠ = 0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

(12a)

whereas the Lagrange submanifold and resistive relation read

L =

{(
q, ψL, qC , φ, iL, uC

)
∈ Rn−|S|

× RmL × RmC × Rn−|S|
× RmL × RmC

⏐⏐⏐

13
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q = 0 ∧ iL = ∇HL(ψL) ∧ uC = ∇HC (qC )

}
, (12b)

R =

{
(−iR , uR ) ∈ RmR × RmR ; | iR = g(uR )

}
. (12c)

The triple (D,L,R) with D, L and R as in (12) is the port-Hamiltonian representation of a circuit with conductances,
inductances, capacitances and sources in a compact form. The dynamics of (D,L,R) read

(− d
dt q(t),−

d
dtψL(t),− d

dt qC (t),−iR (t),−iS(t), φ(t), iL(t), uC (t), uR (t), uS(t)) ∈ D,

(q(t), ψL(t), qC (t), φ(t), iL(t), uC (t)) ∈ L, (−iR (t), eR (t)) ∈ R,

which is equivalent to

⎡⎢⎢⎢⎣
I 0 AC AR AS

0 0 0 0 0
0 −I 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎝

−
d
dt q(t)

−
d
dtψL(t)

−
d
dt qC (t)

−iR (t)

−iS(t)

⎞⎟⎟⎟⎟⎟⎟⎠+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −AL 0 0 0

−A⊤
R 0 0 I 0

−A⊤
L 0 0 0 0

−A⊤
C 0 I 0 0

−A⊤
S 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(t)

iL(t)

uC (t)

uR (t)

uS(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0,

q(t) = 0, iL(t) = ∇HL(ψL(t)), uC (t) = ∇HC (qC (t)), iR (t) = g(uR (t)).

lugging in the latter relations, we obtain

AC
d
dt qC (t) + AR g(A⊤

R φ(t)) + AL iL(t) + AS iS(t) = 0,

−A⊤

L φ(t) +
d
dtψL(t) = 0,

−A⊤

S φ(t) + uS(t) = 0,

A⊤

C φ(t) − ∇HC (qC (t)) = 0,
iL(t) − ∇HL(ψ(t)) = 0.

(13)

If we additionally assume that ∇HC ∈ C1(RmC ,RmC ), ∇HL ∈ C1(RmL ,RmL ) are homeomorphisms, we can introduce the
inverse functions QC := (∇HC )−1

∈ C(RmC ,RmC ), ΨL := (∇HL)−1
∈ C(RmL ,RmL ). Then (13) leads to qC (t) = QC (uC (t)) and

L(t) = ΨL(iL(t)). Further decomposing

AS =
[
AI AV

]
, uS =

(
uI

uV

)
, iS =

(
iI
iV

)
nto edges, voltages and currents to current and voltage sources, we see that (13) leads to the so-called charge/flux-oriented
odified nodal analysis [2, Eq. (3.21)]

AC
d
dt qC (t) + AR g(uR (t)) + AL iL(t) + AI iI (t) + AV iV (t) = 0,

−A⊤

L φ(t) +
d
dtψL(t) = 0,

−A⊤

V φ(t) + uV (t) = 0,

qC (t) − QC (A⊤

C φ(t)) = 0,
ψL(t) − ΨL(iL(t)) = 0.

(MNA c/f)

If we additionally assume that QC ∈ C(RmC ,RmC ) and ΨL ∈ C1(RmL ,RmL ), then we can, by denoting the Jacobians by
(uC ) =

d
duC

QC (uC ) and L(iL) =
d
diL
ΨL(iL), reformulate (MNA c/f) to obtain the modified nodal analysis [18, Eq. (52)]

AC C (A⊤

C φ(t))A
⊤

C
d
dt φ(t) + AR g(A⊤

R φ(t)) + AL iL(t) + AI iI (t) + AV iV (t) = 0,

−A⊤

L φ(t) + L(iL(t)) d
dt iL(t) = 0,

−A⊤

V φ(t) + uV (t) = 0.

(MNA)

ote that, if HC ∈ C2(RmC ,R), HL ∈ C2(RmL ,R), then C (uC ) and L(iL) are, respectively, the inverses of the Hessians of HC

nd HL at QC (uC ) and ΨL(iL).

.2. The (charge/flux-oriented) modified loop analysis

We present an alternative modeling involving the pH system (D′

K (G),L
′

K (G), {0}) with D′

K (G) and L′

K (G) as in (6). That
is, the loops in the underlying graph structure is now taken to model the Kirchhoff laws. First note that the external flows
14
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A

e

R

and efforts variables in the pH system (DS
K (G),L

S
K (G), {0}) in Remark 2.13 are, respectively, the current and the voltage of

the components, while the external flows and efforts variables in (D′

K (G),L
′

K (G), {0}) are, respectively, the voltage and the
current of the components. This means that in order to obtain a pH system (D′,L′,R′) describing the circuit dynamics
by performing an interconnection of (D′

K (G),L
′

K (G), {0}) with N ∈ N electrical components (Di,Li,Ri)i∈{1,...,N}, i.e.,

(D′,L′,R′) := (D′

K (G),L
′

K (G), {0}) ◦

( N

×
i=1

(Di,Li,Ri)

)
,

we have to adjust the definition of the components by interchanging the role of the effort and flow variables, which is
possible by an argument similar to one in Remark 2.13. Given an electrical circuit consisting of resistances, inductances,
capacitances and sources, it can, completely analogous to Section 4.1, be shown that the dynamics of (D′,L′,R′)
lead, under certain additional invertibility and smoothness assumptions on the functions representing capacitances and
inductances, to the modified loop analysis [18, Eq. (53)]

BL L(B⊤

L ι(t))B
⊤

L
d
dt ι(t) + BR r(B⊤

R ι(t)) + BCuC (t) + BIuI (t) + BV uV (t) = 0,

−B⊤

C ι(t) + C (uC (t)) d
dt uC (t) = 0,

−B⊤

I ι(t) + iI (t) = 0.

cknowledgments

This work was supported by the grants RE 2917/4-1 and WO 2056/1-1 ‘‘Systems theory of partialdifferential-algebraic
quations’’ by the Deutsche Forschungsgemeinschaft (DFG).

eferences

[1] B. Andrásfai, Graph Theory: Flows, Matrices, Taylor & Francis, New York London, 1991.
[2] S. Bächle, Numerical Solution of Differential-Algebraic Systems Arising in Circuit Simulation (PhD thesis), Fakultät II - Mathematik und

Naturwissenschaften, Technische Universität Berlin, Berlin, Germany, 2007.
[3] M. Barbero-Liñán, H. Cendra, E. García-Toraño Andrés, D. Martín de Diego, New insights in the geometry and interconnection of port-Hamiltonian

systems, J. Phys. A 51 (37) (2018) 375201, (30 p.).
[4] C. Beattie, V. Mehrmann, H. Xu, H. Zwart, Linear port-Hamiltonian descriptor systems, Math. Control Signals Syst. 30 (4) (2018) 17.
[5] J. Behrndt, M. Kurula, A.J. van der Schaft, H. Zwart, Dirac structures and their composition on Hilbert spaces, J. Math. Anal. Appl. 372 (2) (2010)

402–422.
[6] P.C. Breedveld, B. Maschke, A.J. van der Schaft, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits, IEEE Trans. Circuits Syst.

I. Regul. Pap. 42 (2) (1995) 73–82.
[7] J. Cervera, A.J. van der Schaft, A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica 43 (2)

(2007) 212–225.
[8] T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631–661.
[9] R. Diestel, Graph Theory, fifth ed., in: Graduate Texts in Mathematics, vol. 173, Springer, Berlin, 2017.

[10] D. Jeltsema, A.J. van der Schaft, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control 1 (2–3) (2014) 173–387.
[11] J.M. Lee, Introduction to Smooth Manifolds, second ed., in: Graduate Texts in Mathematics, vol. 218, Springer, New York, 2012.
[12] B. Maschke, A.J. van der Schaft, Generalized port-Hamiltonian DAE systems, Systems Control Lett. 121 (2018) 31–37.
[13] B. Maschke, A.J. van der Schaft, Dirac and Lagrange algebraic constraints in nonlinear port-Hamiltonian systems, Technical report, 2019.
[14] W. Mathis, A. Reibiger, Küpfmüller Theoretische Elektrotechnik, twentieth ed., Springer Vieweg, Berlin, 2017.
[15] C. Mehl, V. Mehrmann, M. Wojtylak, Linear algebra properties of dissipative Hamiltonian descriptor systems, SIAM J. Matrix Anal. Appl. 39 (3)

(2018) 1489–1519.
[16] C. Melchiorri, A.J. van der Schaft, Port-Hamiltonian formulation of infinite dimensional systems - I. Modeling, in: 43rd IEEE Conference on

Decision and Control, December 14-17, 2004, Atlantis, Paradise Island, Bahamas, 2004.
[17] C. Melchiorri, A.J. van der Schaft, Port-Hamiltonian formulation of infinite dimensional systems - II. Boundary control by interconnection, in:

43rd IEEE Conference on Decision and Control, December 14-17, 2004, Atlantis, Paradise Island, Bahamas, 2004.
[18] T. Reis, Mathematical modeling and analysis of nonlinear time-invariant RLC circuits, in: P. Benner, R. Findeisen, D. Flockerzi, U. Reichl, K.

Sundmacher (Eds.), Large-Scale Networks in Engineering and Life Sciences, in: Modeling and Simulation in Science, Engineering and Technology,
Birkhäuser, Basel, 2014, pp. 125–198.

[19] R. Riaza, DAEs in circuit modelling: A survey, in: Achim Ilchmann, Timo Reis (Eds.), Surveys in Differential-Algebraic Equations I, in:
Differential-Algebraic Equations Forum, Springer, Berlin-Heidelberg, 2013, pp. 97–136.

[20] A.J. van der Schaft, Characterization and partial synthesis of the behavior of resistive circuits at their terminals, Systems Control Lett. 59 (7)
(2010) 423–428.

[21] A.J. van der Schaft, Port-Hamiltonian differential-algebraic systems, in: A. Ilchmann, T. Reis (Eds.), Surveys in Differential-Algebraic Equations
I, in: Differential-Algebraic Equations Forum, Springer, Berlin Heidelberg, 2013, pp. 173–226.

[22] A.J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control, third ed., in: Lecture Notes in Control and Information Sciences,
Springer, London, 2017.

[23] A.J. van der Schaft, B. Maschke, Port-Hamiltonian systems on graphs, SIAM J. Control Optim. 51 (2) (2013) 906–937.
[24] A.S. Sedra, K.C. Smith, Microelectronic Circuits, fifth ed., Oxford University Press, New York, 2004.
[25] A. Venkatraman, A. van der Schaft, Energy shaping of port-Hamiltonian systems by using alternate passive input-output pairs, Eur. J. Control

16 (6) (2010) 665–677.
[26] A. Venkatraman, A. van der Schaft, Interconnections of port-Hamiltonian systems: generating new passive outputs and feedback stabilization,

IFAC Proc. Vol. 43 (14) (2010) 605–610.
[27] J.C. Willems, Terminals and ports, IEEE Circuits Syst. Mag. 10 (4) (2010) 8–16.
15

http://refhub.elsevier.com/S0393-0440(20)30232-1/sb1
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb2
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb2
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb2
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb3
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb3
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb3
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb4
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb5
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb5
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb5
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb6
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb6
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb6
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb7
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb7
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb7
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb8
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb9
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb10
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb11
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb12
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb13
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb14
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb15
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb15
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb15
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb16
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb16
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb16
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb17
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb17
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb17
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb18
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb18
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb18
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb18
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb18
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb19
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb19
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb19
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb20
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb20
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb20
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb21
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb21
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb21
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb22
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb22
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb22
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb23
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb24
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb25
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb25
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb25
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb26
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb26
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb26
http://refhub.elsevier.com/S0393-0440(20)30232-1/sb27

	Port-Hamiltonian formulation of nonlinear electrical circuits
	Introduction
	Port-Hamiltonian systems and their interconnections
	Port-Hamiltonian DAE systems
	Interconnection of port-Hamiltonian systems
	Port-Hamiltonian systems on graphs

	Electrical circuits as port-Hamiltonian systems
	Electrical circuits as interconnections of port-Hamiltonian systems
	Physical modeling of circuit components as port-Hamiltonian systems
	Capacitances
	Inductances
	Conductances and resistances
	Ideal and PN-junction diodes
	Transformers
	NPN transistors
	Current and voltage sources


	Comparison with other formulations of electrical circuits
	The (charge/flux-oriented) modified nodal analysis
	The (charge/flux-oriented) modified loop analysis

	Acknowledgments
	References


