4,963 research outputs found
Capture and release of a conditional state of a cavity QED system by quantum feedback
Detection of a single photon escaping an optical cavity QED system prepares a nonclassical state of the electromagnetic field. The evolution of the state can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured (stabilized) and then released. This is observed by a conditional intensity measurement that shows suppression of vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return
Towards a unification of HRT and SCOZA. Analysis of exactly solvable mean-spherical and generalized mean-spherical models
The hierarchical reference theory (HRT) and the self-consistent
Ornstein-Zernike approximation (SCOZA) are two liquid state theories that both
furnish a largely satisfactory description of the critical region as well as
the phase coexistence and equation of state in general. Furthermore, there are
a number of similarities that suggest the possibility of a unification of both
theories. Earlier in this respect we have studied consistency between the
internal energy and free energy routes. As a next step toward this goal we here
consider consistency with the compressibility route too, but we restrict
explicit evaluations to a model whose exact solution is known showing that a
unification works in that case. The model in question is the mean spherical
model (MSM) which we here extend to a generalized MSM (GMSM). For this case, we
show that the correct solutions can be recovered from suitable boundary
conditions through either of SCOZA or HRT alone as well as by the combined
theory. Furthermore, the relation between the HRT-SCOZA equations and those of
SCOZA and HRT becomes transparent.Comment: Minimal correction of some typos found during proof reading. Accepted
for publication in Phys. Rev.
Relativistic Proton Production During the 14 July 2000 Solar Event: The Case for Multiple Source Mechanisms
Protons accelerated to relativistic energies by transient solar and
interplanetary phenomena caused a ground-level cosmic ray enhancement on 14
July 2000, Bastille Day. Near-Earth spacecraft measured the proton flux
directly and ground-based observatories measured the secondary responses to
higher energy protons. We have modelled the arrival of these relativistic
protons at Earth using a technique which deduces the spectrum, arrival
direction and anisotropy of the high-energy protons that produce increased
responses in neutron monitors. To investigate the acceleration processes
involved we have employed theoretical shock and stochastic acceleration
spectral forms in our fits to spacecraft and neutron monitor data. During the
rising phase of the event (10:45 UT and 10:50 UT) we find that the spectrum
between 140 MeV and 4 GeV is best fitted by a shock acceleration spectrum. In
contrast, the spectrum at the peak (10:55 UT and 11:00 UT) and in the declining
phase (11:40 UT) is best fitted with a stochastic acceleration spectrum. We
propose that at least two acceleration processes were responsible for the
production of relativistic protons during the Bastille Day solar event: (1)
protons were accelerated to relativistic energies by a shock, presumably a
coronal mass ejection (CME). (2) protons were also accelerated to relativistic
energies by stochastic processes initiated by magnetohydrodynamic (MHD)
turbulence.Comment: 38 pages, 9 figures, accepted for publication in the Astrophysical
Journal, January, 200
Mehanizam toksičnosti i detoksikacije organofosfornih spojeva s naglaskom na istraživanja u Hrvatskoj
This review comprises studies on the mechanisms of toxicity and detoxication of organophosphorus (OP) compounds done in Croatia in different research areas. One area is the synthesis of antidotes against OP poisoning and their in vivo testing in experimental animals. In vitro studies included in this review focus on the mechanisms of reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), protection of cholinesterases from inhibition by OPs, and reactivation of phosphylated cholinesterases. The third area comprises distribution profiles of BChE and paraoxonase (PON) phenotypes in selected population groups and the detection of OPs and metabolites in humans. Finally, methods are described for the detection of OP compounds in human blood and other media by means of cholinesterase inhibitionPrikazana su istraživanja vođena u Hrvatskoj na različitim područjima mehanizma toksičnosti i detoksikacije organofosfornih (OP) spojeva. Jedno je područje sinteza antidota protiv otrovanja OP spojevima i testiranje in vivo antidota na eksperimentalnim životinjama. Istraživanja in vitro odnose se na mehanizam reverzibilne inhibicije acetilkolinesteraze (AChE) i buturilkolinesteraze (BChE), zaštitu kolinesteraza od inhibicije OP spojevima te reaktivaciju fosfiliranih kolinesteraza. Treće je područje distribucija fenotipova BChE i paraoksonaze (PON) u odabranim populacijama te detekcija OP spojeva i njihovih metabolita u ljudima. Na kraju su opisane metode detekcije OP spojeva u ljudskoj krvi i drugim medijima koje se osnivaju na inhibiciji kolinesteraza
Optical Tweezers as an Effective Tool for Spermatozoa Isolation from Mixed Forensic Samples
A single focus optical tweezer is formed when a laser beam is launched through a high numerical aperture immersion objective. This objective focuses the beam down to a diffraction-limited spot, which creates an optical trap where cells suspended in aqueous solutions can be held fixed. Spermatozoa, an often probative cell type in forensic investigations, can be captured inside this optical trap and dragged one by one across millimeter-length distances in order to create a cluster of cells which can be subsequently drawn up into a capillary for collection. Sperm cells are then ejected onto a sterile cover slip, counted, and transferred to a tube for DNA analysis workflow. The objective of this research was to optimize sperm cell collection for maximum DNA yield, and to determine the number of trapped sperm cells necessary to produce a full STR profile. A varying number of sperm cells from both a single-source semen sample and a mock sexual assault sample were isolated utilizing optical tweezers and processed using conventional STR analysis methods. Results demonstrated that approximately 50 trapped spermatozoa were required to obtain a consistently full DNA profile. A complete, single-source DNA profile was also achieved by isolating sperm cells via optical trapping from a mixture of sperm and vaginal epithelial cells. Based on these results, optical tweezers are a viable option for forensic applications such as separation of mixed populations of cells in forensic evidence
Five-Torsion in the Homology of the Matching Complex on 14 Vertices
J. L. Andersen proved that there is 5-torsion in the bottom nonvanishing
homology group of the simplicial complex of graphs of degree at most two on
seven vertices. We use this result to demonstrate that there is 5-torsion also
in the bottom nonvanishing homology group of the matching complex on
14 vertices. Combining our observation with results due to Bouc and to
Shareshian and Wachs, we conclude that the case is exceptional; for all
other , the torsion subgroup of the bottom nonvanishing homology group has
exponent three or is zero. The possibility remains that there is other torsion
than 3-torsion in higher-degree homology groups of when and .Comment: 11 page
Compressive damage modeling of fiber-reinforced composite laminates using 2D higher-order layer-wise models
A refined progressive damage analysis of fiber-reinforced laminated composites subjected to compressive loads is presented here. The numerical analysis exploits higher-order theories developed using the Carrera Unified Formulation, specifically 2D plate theories with Lagrange polynomials to enhance the kinematic approximation through each ply’s thickness resulting in a layer-wise structural model. The CODAM2 material model, based on continuum damage mechanics, governs the intralaminar composite damage. The Hashin criteria and the crack-band approach provide failure initiation and propagation, respectively. Fiber micro-buckling and kinking are
taken into account via the use of nonlinear post-peak softening models. It is shown that linear-brittle stress-strain softening is effective for accurate compressive strength predictions. A series of numerical assessments on coupon level composite laminates is carried out to verify the proposed numerical framework while its validation is demonstrated by successfully applying the numerical tool to test cases for which experimental data is available
from the literature. Various through-the-thickness structural models are evaluated to provide insights for proper modeling. Numerical assessments considered quasi-isotropic laminates, the compressive strength, and size-effects
under brittle fracture of notched laminates, and progressive damage characteristics due to stable crack growth in compact compression tests. The results show the possibility of using coarser meshes than those used in standard
FEM approaches as the accuracy of predictions is preserved through the use of higher-order structural theories
Chondrosarcoma of the Pelvis: Oncologic and Functional Outcome
Purpose. Chondrosarcoma (CS) most commonly involves the pelvis.
The factors that influence local and systemic control of pelvic CS and the functional outcome
should be evaluated
- …