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Detection of a single photon escaping an optical cavity QED system prepares a nonclassical state of
the electromagnetic field. The evolution of the state can be modified by changing the drive of the cavity.
For the appropriate feedback, the conditional state can be captured (stabilized) and then released. This
is observed by a conditional intensity measurement that shows suppression of vacuum Rabi oscillations
for the length of the feedback pulse and their subsequent return.
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Feedback control of quantum systems was first studied
about 15 years ago [1–3] in quantum optics. In these
approaches, the feedback could be understood in an es-
sentially classical way, with quantum field theory enter-
ing only to dictate the magnitude of the fluctuations. This
is possible if fluctuations are small compared to the mean
fields being detected. More recently, a different approach
to quantum optical feedback has been developed [4,5],
based on quantum trajectories [6–8], which specify the
stochastic evolution of a quantum state conditioned on
continuous monitoring (such as by photodetection). This
theory allows the treatment of feedback in the deep
quantum regime, where quantum fluctuations are not
small compared to the mean. It is also arguably the best
way to approach feedback, as the conditioned state by
definition comprises all of the knowledge of the experi-
menter on which feedback could be based [9,10].

Thus far, experiments in quantum feedback, such as
Refs. [1,11–15], have all been in the regime of small
fluctuations [16]. Cavity quantum electrodynamics
(QED) is able to explore the opposite regime, where
fluctuations in the conditional state are large. In this
Letter, we present experimental results for the application
of feedback in this regime. Following a photodetection,
the conditioned quantum state of the system is j c���i
[17,18]. Given our knowledge of this evolution, we can,
for certain times �, change the parameters of the system
dynamics so as to capture the system in that conditioned
state. When the parameters are later restored to their
usual values, the released system state resumes its inter-
rupted evolution. This directly demonstrates both the
reality of the conditioned state and its usefulness for
quantum feedback.

A cavity QED system consists of a single mode of the
electromagnetic field of a cavity interacting with one or a
collection of N two-level atoms [19]. Microwave cavity
QED systems have been used recently to produce multi-
particle entanglement [20], and to prepare photon number
states of the electromagnetic field [21]. Optical cavity
QED systems can now trap single atoms in the electric
field of the cavity when its average occupation is about

one photon [22,23]. They also show the conditional evo-
lution of the electromagnetic field [24,25]. The system
size and dynamics are characterized by two ratios: the
saturation photon number n0 and the single atom cooper-
ativity C1. They scale the influence of a photon and the
influence of an atom in cavity QED. These two numbers
relate the reversible dipole coupling of a single atom to
the cavity mode (g) with the irreversible coupling to the
reservoirs through cavity (�) and atomic radiative (�)
decays: C1 � g2=�� and n0 � �2=3g2. The strong cou-
pling regime of cavity QED requires n0 � 1, and C1 � 1.
Strictly speaking, the coupling constant g is spatially
dependent and together with the N moving atoms may
be described by effective constants geff and Neff .

With weak driving, the system can be accurately mod-
eled with a basis that includes up to two excitations of the
coupled normal modes of the field and the atoms [17,18].
In this regime, photodetections are very infrequent, and
the state before a detection can be taken to be the steady
state, which is almost pure:
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Here jn;Gi represents n photons with all �N� atoms in
their ground state; jn; Ei represents n photons with one
atom in the excited state with the rest �N 	 1� in their
ground state, symmetrized over all atoms. The small
parameter is � � hâai � �=���1� C1N�, which depends
on the input driving field �, while �0 and �0 are coeffi-
cients of order unity for the two-excitation components
that have nonzero photon number, and depend on g, �, and
� [17,18]. After a photodetection occurs j ssi collapses to
âaj ssi=
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, which evolves as the conditioned state:
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This is different from the initial state because � (the
‘‘field’’ evolution) and � (the ‘‘atomic polarization’’ evo-
lution) oscillate coherently at the vacuum Rabi frequency
�� g

����
N

p
� over time as the system reequilibrates exchang-

ing energy between the atomic polarization and the cavity
field [17,18].

If we choose a time � � T for Eq. (2) such that ��T� �
��T� then, to order �, we obtain

j c�T�i ’ j0; Gi � �0
�
j1; Gi 	

2g
����
N

p

�
j0; Ei

�
; (3)

This is of the form of j ssi in Eq. (1) but with a different
mean field �0 � ��T��. This conditional state can be
stabilized if, at time T, we change the driving amplitude
by a factor ��T�. Despite the almost 90� out of phase
oscillations between the field ��� and the atomic polar-
ization ��� [18], the time T is close to the time when the
field fluctuation crosses the mean. This way of stabilizing
the conditional state is possible because it is a pure
quantum state with two real parameters (� and �) and
two control parameters (the change in the drive �0 	 �
and the timing of the change T). A classical system of two
coupled harmonic oscillators with added classical noise
that has g�2��0� � 1 would require more than two parame-
ters to describe it, and the above feedback method would
almost certainly provide insufficient control to freeze the
dynamics.

Conditional quantum states such as Eq. (2) can be
measured using the intensity correlation function g�2����
[25]. The normalized correlation function of the intensity
is the time-ordered and normally ordered average:

g�2���� �
hâay�t�âay�t� ��âa�t� ��âa�t�iss

hâay�t�âa�t�i2ss
�

hn̂n�t� ��ic
hn̂n�t�iss

;

(4)

where n̂n � âayâa, and c means ‘‘conditioned on a detection
at time t in steady state.’’

Ordinarily, g�2���� would always be symmetrical in �,
as the � � 0 point is randomly determined by the detec-
tion of a photon at one detector [26]. However, if this
detection is used to trigger a feedback pulse on the
system, the correlation function will no longer be time
symmetric. Nevertheless, for � > 0 the expression (4)
still measures the conditional state in the presence of
feedback (fb):

g�2���� ’
jh1; Gj c�fb���ij2

jh1; Gj ssij
2 � ��fb���

2: (5)

Figure 1 shows the conditional evolution of the state of
the cavity QED system, as given by Eq. (5). We start with
the quantum theory valid for N two-level atoms identi-
cally coupled to the cavity in the weak field regime [17].
We find geff < g and Neff [27,28] using our experimen-
tally determined values for g�2��0� such that g

����
N

p
�

geff
���������
Neff

p
. All broadening effects are incorporated by

the modification of the atomic decay rate, �! �0. We

numerically solve the time evolution with the driving
step. This simplified approach agrees with our previous
work for g�2���� [29]. The dashed line is the free evolution
of the system, and shows the time symmetry of the corre-
lation function. The application of a feedback pulse at
time T alters the evolution of the system. The continuous
line shows the evolution when the step change in the driv-
ing intensity � satisfies the conditions necessary to reach
a new steady state described by Eq. (3). The parameters of
the calculation are close to those of our experiment. We
assume that the rise and fall of the change in the intensity
(I) are instantaneous. The new state reached by the
system after the change of driving intensity no longer
shows the vacuum Rabi oscillations and instead has a new
value for the steady state slightly lower than the original
one. The duration of the pulse that changes the steady
state is finite and our model shows the reappearance of the
oscillation delayed by the length of the pulse.

Our cavity QED apparatus and intensity correlator,
described in detail in Ref. [29], consist of the cavity,
the atomic beam, an excitation laser, and the detector
system. Two high reflectivity curved mirrors (input trans-
mission mirror 10 ppm, output transmission mirror
285 ppm, and separation l � 880 �m) form the optical
cavity (waist of the TEM00 mode w0 � 34 �m). A
Pound-Drever-Hall stabilization technique keeps the cav-
ity locked to the appropriate atomic resonance. An effu-
sive oven produces a thermal (440 K) beam of Rb atoms
with an angular spread of 2.8 mrad at the cavity mode. A
laser beam intersects the atomic beam before the atoms
enter the cavity in a region with 2.5 G uniform magnetic
field. It optically pumps all the 85Rb atoms of the F � 3
ground state into the magnetic sublevel F � 3, mF � 3.
The three rates that characterize our cavity QED system
are �g; �; �=2�=2� � �5:1; 3:7; 3:0� MHz.

Figure 2 shows a schematic of our apparatus. Light
from a Ti:sapphire, locked to the 5S1=2, F � 3 ! 5P3=2,
F � 4 transition of 85Rb at 780 nm, drives the cavity
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FIG. 1. Conditional evolution of cavity QED system,
�g

����
N

p
; �0; ��=2� � �37:3; 9:1; 3:7� MHz, with (continuous

line) and without (dashed line) feedback. The shaded rectangle
region corresponds to an instantaneous step down of I �
	0:2% of the driving intensity applied at time T.
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QED system. The signal escaping the cavity creates
photodetections at the ‘‘start’’and ‘‘stop’’ avalanche pho-
todiodes (APD). The output pulse of the start detector is
split and one part sent to the start channel of the corre-
lator, which measures g�2���� and consists of a time to
digital converter (TDC) with 0.5 ns per bin, histogram-
ming memory, and a computer. The other goes to a vari-
able time delay, and after pulse shaping and lengthening,
drives an electro-optical modulator in front of a polarizer
to produce a change, I, in the driving intensity of the
cavity. This pulse has an 8 ns rise time and is 120 ns long.
The delay between the detection of a photon at APD1 and
the arrival of the pulse at the cavity can be as short as
45 ns. The other APD sends its pulses to the correlator to
stop the TDC that measures the time interval between
the two events. A histogram of the delays between the
start and the stop gives the conditional evolution of the
intensity.

We operate the cavity QED system in a nonclassical
regime where the size of the vacuum Rabi oscillations is
large enough to permit their rapid identification during
data taking. We begin by measuring the antibunched
second order correlation function of the intensity escap-
ing our cavity QED system.We then apply the step change
in the driving intensity at time T to fulfill the conditions
of Eq. (3) and obtain a new steady state.

Figure 3 shows measurements of the correlation func-
tion in the absence 3(i) and presence [3(ii), 3(iii), and
3(iv)] of feedback. Traces 3(i) and 3(ii) have the same
oscillating frequency while for traces 3(iii) and 3(iv) we
have smaller numbers of atoms. �� marks the position
where the oscillation we want to suppress reaches a maxi-
mum. The steady state corresponds to an intracavity in-
tensity of n=n0 � 0:2. Figure 3(ii) shows the correlation
function with step-down feedback (I � 	2:6%) for
120 ns, beginning at � � T � 57 ns, when the oscillation
crosses unity and is growing. The oscillation that has a
maximum in trace 3(i) at the point marked by �� has
disappeared, the steady state is lower than that marked
by the dashed line, and the oscillation reappears after the
pulse is turned off with approximately the same ampli-
tude and phase as the suppressed one. Trace 3(iii) shows

feedback applied at T � 56 ns with a step (I � 3:0%)
to enhance the oscillations. Trace 3(iv) shows step-up
feedback (I � 3:9%) to suppress oscillations at T �
46 ns when the phase is opposite from that in trace 3(ii).

The time T for the application of the pulse is critical to
achieve good suppression [Fig. 3(ii)] or enhancement
[Fig. 3(iii)] of the oscillation. The slow decay seen in
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FIG. 2. Simplified diagram of the experimental setup.
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FIG. 3. Measured intensity correlation function with the
feedback step applied during the shaded region: (i) no feedback
(g

����
N

p
=2� � 37 MHz), (ii) suppression (g

����
N

p
=2� � 37 MHz,

I � 	2:6%), (iii) enhancement (g
����
N

p
=2� � 34 MHz, I �

3%), (iv) suppression (g
����
N

p
=2� � 31 MHz, I � 3:9%). The

time T for the beginning of the feedback and its duration are
indicated by the position and size of the shaded region. The
data has been binned in 2.5 ns intervals joined with a line.
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Fig. 3(iv) is related to distortion of the electrical pulse for
higher steps, which also prevents the clear restoration of
the oscillation at the end of the pulse. Our electrical pulse
generator also limits the available length of the pulse.
There is qualitative agreement between the traces i and ii
with those of the theory in Fig. 1. They show the sup-
pression and the delayed return of the oscillation by the
application of a feedback pulse to the driving intensity.
Although the theoretical model does not include all the
experimental details that give rise to broadening the main
features of the response are clearly explained.

We have followed the size of the amplitude of the
oscillation immediately after we apply the feedback
pulse, at the time �� defined in Fig. 3, as a function of
I, to make a quantitative comparison with theory.
Figure 4 shows the results for a series of measurements
under similar conditions as those for traces 3(i) and 3(ii)
for I positive and negative. The theory (dashed line)
incorporates the shape of the experimental pulse, and uses
�g

����
N

p
; �0; ��=2� � �37; 9:1; 3:7� MHz. The plot shows

both enhancement and suppression with quantitative
agreement.

The quantum feedback in this system is triggered by a
fluctuation (detection of a photon) that is large enough,
because of the strong coupling, to significantly modify
the system. This detection prepares the system in an
evolving conditional state. We then change the drive of
the system and are able to freeze its evolution to a new
time-independent steady state. The suppressed oscilla-
tions return once the pulse turns off, with the same phase
and amplitude information. This sort of quantum feed-
back is a novel way to manipulate the fragile conditional
states that come from strongly coupled systems.
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FIG. 4. Amplitude of the normalized intensity response at
time �� [first oscillation extreme of g�2���� after the application
of the feedback pulse] as a function of the size of the feedback
step I. The dashed line is a theoretical prediction.
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