1,483 research outputs found

    Exact solution to a nonlinear Klein-Gordon equation

    Get PDF
    AbstractThe nonlinear Klein-Gordon equation ∂μ∂μΦ + M2Φ + λ1Φ1−m + λ2Φ1−2m = 0 has the exact formal solution Φ = [u2m −λ1um/(m − 2)M2+λ12/(m−2)2M4−λ2/4(m − 1)M2]1/mu−1, m ≠ 0, 1, 2, where u and v−1 are solutions of the linear Klein-Gordon equation. This equation is a simple generalization of the ordinary second order differential equation satisfied by the homogeneous function y = [aum + b(uv)m/2 + cvm]k/m, where u and v are linearly independent solutions of y″ + r(x) y′ + q(x) y = 0

    Prior events predict cerebrovascular and coronary outcomes in the PROGRESS trial

    Get PDF
    <p><b>Background and Purpose:</b> The relationship between baseline and recurrent vascular events may be important in the targeting of secondary prevention strategies. We examined the relationship between initial event and various types of further vascular outcomes and associated effects of blood pressure (BP)–lowering.</p> <p><b>Methods:</b> Subsidiary analyses of the Perindopril Protection Against Recurrent Stroke Study (PROGRESS) trial, a randomized, placebo-controlled trial that established the benefits of BP–lowering in 6105 patients (mean age 64 years, 30% female) with cerebrovascular disease, randomly assigned to either active treatment (perindopril for all, plus indapamide in those with neither an indication for, nor a contraindication to, a diuretic) or placebo(s).</p> <p><b>Results:</b> Stroke subtypes and coronary events were associated with 1.5- to 6.6-fold greater risk of recurrence of the same event (hazard ratios, 1.51 to 6.64; P=0.1 for large artery infarction, P<0.0001 for other events). However, 46% to 92% of further vascular outcomes were not of the same type. Active treatment produced comparable reductions in the risk of vascular outcomes among patients with a broad range of vascular events at entry (relative risk reduction, 25%; P<0.0001 for ischemic stroke; 42%, P=0.0006 for hemorrhagic stroke; 17%, P=0.3 for coronary events; P homogeneity=0.4).</p> <p><b>Conclusions:</b> Patients with previous vascular events are at high risk of recurrences of the same event. However, because they are also at risk of other vascular outcomes, a broad range of secondary prevention strategies is necessary for their treatment. BP–lowering is likely to be one of the most effective and generalizable strategies across a variety of major vascular events including stroke and myocardial infarction.</p&gt

    Amplitude Zeros in Radiative Decays of Scalar Particles

    Full text link
    We study amplitude zeros in radiative decay processes with a photon or a gluon emission of all possible scalar particles(e.g. scalar leptoquarks) which may interact with the usual fermions in models beyond the standard model. For the decays with a photon emission, the amplitudes clearly exhibit the factorization property and the differential decay rates vanish at specific values of a certain variable which are determined only by the electric charges of the particles involved and independent of the particle masses and the various couplings. For the decays with a gluon emission, even though the zeros are washed away, the differential decay rates still have distinct minima. The branching ratios as a function of leptoquark masses are presented for the scalar leptoquark decays. We also comment on the decays of vector particles into two fermions and a photon.Comment: Revtex, 17 pages + 6 figures (available upon request), Preprint, OITS559. Several typos with tex file were correcte

    Exposure to boat noise in the field yields minimal stress response in wild reef fish

    Get PDF
    Aquatic anthropogenic noise is on the rise, with growing concern about its impact on species that are sensitive to low-frequency sounds (e.g. most fish and invertebrates). We investigated whether the reef fish Halichoeres bivittatus living in both noisy and quiet areas had differing levels of baseline stress (measured as whole-body cortisol) and whether they would exhibit a physiological stress response when exposed to boat noise playbacks. While the playback experiments significantly increased cortisol levels in fish from our experiment compared to baseline levels, there were minimal pairwise differences across treatments and no difference in baseline stress for fish living in noisy vs. quiet areas. These results may be explained by low overall auditory sensitivity, habituation to a fairly noisy environment (due to biological sounds), or that boat noise simply may not represent an immediate threat to survival in this species. These findings contrast recent studies that have shown elevated stress responses in fishes when exposed to boat noise and highlights that inter-specific differences must be considered when evaluating potential impacts of anthropogenic noise on marine life

    Reaction-controlled diffusion: Monte Carlo simulations

    Full text link
    We study the coupled two-species non-equilibrium reaction-controlled diffusion model introduced by Trimper et al. [Phys. Rev. E 62, 6071 (2000)] by means of detailed Monte Carlo simulations in one and two dimensions. Particles of type A may independently hop to an adjacent lattice site provided it is occupied by at least one B particle. The B particle species undergoes diffusion-limited reactions. In an active state with nonzero, essentially homogeneous B particle saturation density, the A species displays normal diffusion. In an inactive, absorbing phase with exponentially decaying B density, the A particles become localized. In situations with algebraic decay rho_B(t) ~ t^{-alpha_B}, as occuring either at a non-equilibrium continuous phase transition separating active and absorbing states, or in a power-law inactive phase, the A particles propagate subdiffusively with mean-square displacement ~ t^{1-alpha_A}. We find that within the accuracy of our simulation data, \alpha_A = \alpha_B as predicted by a simple mean-field approach. This remains true even in the presence of strong spatio-temporal fluctuations of the B density. However, in contrast with the mean-field results, our data yield a distinctly non-Gaussian A particle displacement distribution n_A(x,t) that obeys dynamic scaling and looks remarkably similar for the different processes investigated here. Fluctuations of effective diffusion rates cause a marked enhancement of n_A(x,t) at low displacements |x|, indicating a considerable fraction of practically localized A particles, as well as at large traversed distances.Comment: Revtex, 19 pages, 27 eps figures include

    Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers

    Get PDF
    This paper reports the effects of efflorescence on the microstructural and mechanical properties of fly ash-based geopolymers. Geopolymer pastes manufactured by sodium hydroxide and sodium silicate activation of three Class F fly ashes exhibit varying efflorescence behaviour. The geopolymer derived from sodium silicate activation of fine fly ash, which has a compact microstructure, shows a relatively slow efflorescence rate and low efflorescence potential. The efflorescence occurring on the surface of the geopolymer specimens does not change their mineralogical characteristics. However, the compressive strength development and compressive modulus of geopolymers can be affected through processes related to the loss of alkalis, and also to subflorescence. The phenomenon of subflorescence can be regarded as an extended efflorescence taking place under the surface of the material, leading to crystallisation pressure, which may exceed the tensile strength of hardened binders and generate structural damage

    Nuclear shell-model calculations for 6Li and 14N with different NN potentials

    Full text link
    Two ``phase-shift equivalent'' local NN potentials with different parametrizations, Reid93 and NijmII, which were found to give nearly identical results for the triton by Friar et al, are shown to yield remarkably similar results for 6Li and 14N in a (0+2)hw no-core space shell-model calculation. The results are compared with those for the widely used Hamada-Johnson hard-core and the original Reid soft-core potentials, which have larger deuteron D-state percentages. The strong correlation between the tensor strength and the nuclear binding energy is confirmed. However, many nuclear-structure properties seem to be rather insensitive to the details of the NN potential and, therefore, cannot be used to test various NN potentials. (Submitted to Phys. Rev. C on Nov. 9, 1993 as a Brief Report.)Comment: 12 text pages and 1 figure (Figure available upon request), University of Arizona Physics Preprint (Number not yet assigned

    Parity-Violating Interaction Effects I: the Longitudinal Asymmetry in pp Elastic Scattering

    Get PDF
    The proton-proton parity-violating longitudinal asymmetry is calculated in the lab-energy range 0--350 MeV, using a number of different, latest-generation strong-interaction potentials--Argonne V18, Bonn-2000, and Nijmegen-I--in combination with a weak-interaction potential consisting of rho- and omega-meson exchanges--the model known as DDH. The complete scattering problem in the presence of parity-conserving, including Coulomb, and parity-violating potentials is solved in both configuration- and momentum-space. The predicted parity-violating asymmetries are found to be only weakly dependent upon the input strong-interaction potential adopted in the calculation. Values for the rho- and omega-meson weak coupling constants hρpph^{pp}_\rho and hωpph^{pp}_\omega are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV.Comment: 24 pages, 8 figures, submitted to Physical Review

    Constraining models of the large scale Galactic magnetic field with WMAP5 polarization data and extragalactic Rotation Measure sources

    Full text link
    We introduce a method to quantify the quality-of-fit between data and observables depending on the large scale Galactic magnetic field. We combine WMAP5 polarized synchrotron data and Rotation Measures of extragalactic sources in a joint analysis to obtain best fit parameters and confidence levels for GMF models common in the literature. None of the existing models provide a good fit in both the disk and halo regions, and in many instances best-fit parameters are quite different than the original values. We note that probing a very large parameter space is necessary to avoid false likelihood maxima. The thermal and relativistic electron densities are critical for determining the GMF from the observables but they are not well constrained. We show that some characteristics of the electron densities can already be constrained using our method and with future data it may be possible to carry out a self-consistent analysis in which models of the GMF and electron densities are simultaneously optimized.Comment: 27 pages, 13 figures. Accepted for publication in JCAP; arXiv version updated to include minor revision

    Anisotropic Bose-Einstein condensates and completely integrable dynamical systems

    Full text link
    A Gaussian ansatz for the wave function of two-dimensional harmonically trapped anisotropic Bose-Einstein condensates is shown to lead, via a variational procedure, to a coupled system of two second-order, nonlinear ordinary differential equations. This dynamical system is shown to be in the general class of Ermakov systems. Complete integrability of the resulting Ermakov system is proven. Using the exact solution, collapse of the condensate is analyzed in detail. Time-dependence of the trapping potential is allowed
    corecore