1,930 research outputs found
Trapped-Atom-Interferometer in a Magnetic Microtrap
We propose a configuration of a magnetic microtrap which can be used as an
interferometer for three-dimensionally trapped atoms. The interferometer is
realized via a dynamic splitting potential that transforms from a single well
into two separate wells and back. The ports of the interferometer are
neighboring vibrational states in the single well potential. We present a
one-dimensional model of this interferometer and compute the probability of
unwanted vibrational excitations for a realistic magnetic potential. We
optimize the speed of the splitting process in order suppress these excitations
and conclude that such interferometer device should be feasible with currently
available microtrap technique.Comment: 6 pages, 6 figures, submitted to PR
Topological characterizations of ωμ-metrizable spaces
AbstractThis paper is a detailed elaboration of a talk given by the second author at the Oxford conference in June 1989. It presents necessary and sufficient conditions for a topological space to be ωμ-metrizable (μ> 0), i.e., linearly uniformizable with uncountable uniform weight. In other words, such spaces are exactly those which can be metrized by a distance function taking its values in a totally ordered Abelian group with cofinality ωμ. (For ωμ = ω0, we obtain characterizations of strongly zero-dimensional metric spaces, i.e., nonarchimedeanly metrizable spaces.)It turns out that (strong) suorderability and the existence of a σ-discrete (respectively ωμ- discrete) dense subspace are the most interesting properties in this respect, whenever ωμ > ω0, or ωμ = ω0 and dim X = 0. Therefore, a main part of the paper is devoted to the study of GO-spaces having a σ-discrete (ωμ) dense subspace (Section 3). The last section (Section 4) is concerned with the characterization of ωμ-metrizability in the realm of generalized metric spaces, in particular, by using g-functions.Since all our spaces are zero-dimensional, the paper also contributes results to this important class of spaces, in particular, to the class of nonarchimedean topological spaces
Program user's manual for optimizing the design of a liquid or gaseous propellant rocket engine with the automated combustor design code AUTOCOM
This computer program manual describes in two parts the automated combustor design optimization code AUTOCOM. The program code is written in the FORTRAN 4 language. The input data setup and the program outputs are described, and a sample engine case is discussed. The program structure and programming techniques are also described, along with AUTOCOM program analysis
Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir-Polder potential
We investigate the possibility to trap ultracold atoms near the outside of a
metallic carbon nanotube (CN) which we imagine to use as a miniaturized
current-carrying wire. We calculate atomic spin flip lifetimes and compare the
strength of the Casimir-Polder potential with the magnetic trapping potential.
Our analysis indicates that the Casimir-Polder force is the dominant loss
mechanism and we compute the minimum distance to the carbon nanotube at which
an atom can be trapped.Comment: 8 pages, 3 figure
SoftNet: A Package for the Analysis of Complex Networks
Identifying the most important nodes according to specific centrality indices is an important issue in network analysis. Node metrics based on the computation of functions of the adjacency matrix of a network were defined by Estrada and his collaborators in various papers. This paper describes a MATLAB toolbox for computing such centrality indices using efficient numerical algorithms based on the connection between the Lanczos method and Gauss-type quadrature rules
Disruption of reflecting Bose-Einstein condensates due to inter-atomic interactions and quantum noise
We perform fully three-dimensional simulations, using the truncated Wigner
method, to investigate the reflection of Bose-Einstein condensates from abrupt
potential barriers. We show that the inter-atomic interactions can disrupt the
internal structure of a cigar-shaped cloud with a high atom density at low
approach velocities, damping the center-of-mass motion and generating vortices.
Furthermore, by incorporating quantum noise we show that scattering halos form
at high approach velocities, causing an associated condensate depletion. We
compare our results to recent experimental observations.Comment: 5 figure
Evaluation of recombinant proteins of Neospora caninum as vaccine candidates (in a mouse model)
Abortion, resulting from infections by the parasite Neospora caninum, is a major cause of economic loss to both the dairy and beef industries of cattle-producing countries of the world. Vaccination as a means of preventing abortion and/or infection represents a viable control strategy; indeed a commercial vaccine is available in some countries, albeit of unknown efficacy. The commercial vaccine is based on inactivated tachyzoites of N. caninum but other approaches based on lysates and recombinant antigens of N. caninum may also be feasible. In this study we have used an immunisation/challenge model of transplacental transmission, based on the Qs mouse with an Nc-Liverpool challenge, to investigate the vaccine potential of a number of formulations based on four recombinant proteins of N. caninum (GRA1, GRA2, MIC10, and p24B). All formulations studied were immunogenic in the mouse when assessed by ELISA using sonicated tachyzoite antigen as the target antigen. In one experiment, a mixture of MIC10 and p24B produced partial protection against transplacental transmission of N. caninum in this mouse model; in contrast a live infection of tachyzoites of NC-Nowra given before pregnancy always induces very high levels of protective immunity. The field of vaccines against Neospora-associated abortion in cattle is discussed. © 2008 Elsevier Ltd. All rights reserved
- …