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Abstract 

Nyikos, P.J. and H.-C. Reichel, Topological characterizations of w,-metrizable spaces, Topology 
and its Applications 44 (1992) 293-308. 

This paper is a detailed elaboration of a talk given by the second author at the Oxford conference 

in June 1989. It presents necessary and sufficient conditions for a topological space to be 

w,-metrizable (p > 0), i.e., linearly uniformizable with uncountable uniform weight. In other 

words, such spaces are exactly those which can be metrized by a distance function taking its 

values in a totally ordered Abelian group with cotinality or. (For w* = q,, we obtain character- 

izations of strongly zero-dimensional metric spaces, i.e., nonarchimedeanly metrizable spaces.) 

It turns out that (strong) suborderability and the existence of a c-discrete (respectively wW- 

discrete) dense subspace are the most interesting properties in this respect, whenever We > q,, 
or wp = w,, and dim X = 0. Therefore, a main part of the paper is devoted to the study of GO-spaces 

having a a-discrete (w,-discrete) dense subspace (Section 3). The last section (Section 4) is 

concerned with the characterization of w,-metrizability in the realm of generalized metric spaces, 

in particular, by using g-functions. 

Since all our spaces are zero-dimensional, the paper also contributes results to this important 

class of spaces, in particular, to the class of nonarchimedean topological spaces. 

Keywords: w,-metrizability, linear uniformizability, generalized metric spaces, linearly stratifiable 

spaces, GO-spaces, a-discrete subset, strong suborderability, zero-dimensional spaces, nonarchi- 
medean metrics, nonarchimedean topological spaces, GO-spaces with w,-discrete dense subspaces. 

AMS (MOS) Subj. Class.: 54E35, 54E15, 54E20, 54F05. 

Introduction and survey 

Recently, (e.g. by papers of Hodel [6], HuSek [7], Kopperman [lo, 41, and others), 

the theory of nonnumerical distance functions has gained new interest, see also [21]. 
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One of the most interesting kinds of such distance functions are “metrics” d 

which take their values in linearly ordered Abelian groups (G; +, <). A topological 

space (X, 7) is metrizable over G if there is a (distance) function d : X2 + G satisfying 

(1) d(x,y)zO VX,~EX; d(x,y)=Oex=y, 

(2) d(x,y)=d(y,x) ~X,YEX 

(3) d(x,z)sd(x,y)+d(y,z) ~x,y,z~X, 

and such that, for any x E X, the balls B,(x), F E G, E > 0, form a local base at x. 

The following equivalences are well known: 

(1) (X, T) is metrizable over a totally ordered Abelian group (G, <) with cofinality 

cof G=w,. 

(2) (X, 7) is metrizable either over R (“w,-metrizable” = “metrizable”) or - if 

p > 0 - over G = n{Zj 1 i < w,}’ ordered lexicographically (X is “w,-metrizabZe for 

p>O”) (see e.g. [12, 14, 21, 221). 

(3) r can be generated by a uniformity U on X which has a totally ordered base 

CZI={BiIi<o,, B, c Bi e i 6 j}, i.e., (X, T) is “linearly uniformizable” and its uni- 

form weight is Ok,, which - in that case - is also equal to the pseudoweight cp(AX) 

of the diagonal AX of X (see e.g. [7]). 

Several authors have contributed topological characterizations of w,-metrizable 

spaces for p > 0 (see e.g. [6] and the bibliography in [7]), most of them generalizing 

classical metrization theorems to higher cardinals, This situation, however, is not 

completely satisfying, since, for /_L > 0, the class of w,-metrizable spaces is not just 

a direct and straightforward generalization of metric spaces, it has many autonomous 

and independent aspects which do not have analogues for metrizable spaces in 

general (see e.g. [7, 9, 17, 22, 231 and others). It is this aspect which shall be 

emphasized in the following (which in some sense fills up the work in [7, 15, 201, 

where Purisch defines “almost n.a. spaces”). 

For w,>w,, w,-metrizable spaces are strongly zero-dimensional and - even 

stronger - they are nonarchimedean (n.a.) topological spaces, i.e., T,-spaces with a 

topological base C%’ such that, for all disjoint B, , B, E %‘, either B, c Bz or B1 3 B, 

(for more details, see [2, 7, 12, 14, 15, 19, 20, 23]).* Hence they are hereditarizy 

paracompact and suborderable. If a n.a. topological space is metrizable, it is nonarchi- 

medeanly metrizable (d(x, z) s max[d (x, y), d(y, z)] Vx, y, z E X). And - as it has 

been proved e.g. by de Groot [l] - (X, ) 7 is n.a. metrizable iff dim X =O. Hence, 

for p > 0, w,-metrizable spaces typically generalize strongly zero-dimensional metric 

spaces. 
Another topological property typical for w,-metrizable spaces if p > 0, is that all 

these spaces are strongly suborderable (Section 2). Therefore, in the following, we 

want to characterize w,-metrizable spaces (p > 0) as a subclass of 

(1) all nonarchimedean topological spaces (Section 1) and 

’ Z, denotes the set of all integers, for every i. 
* Equivalently, these are exactly those T,-spaces having a free base (with respect to inclusion of basic 

sets. (For this reason, n.a. spaces also were called “spaces with a ramified base” (D. Kurepa, P. Papit; 

see [7,23]). 
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(2) all strongly suborderable spaces (Section 2). 

Generally, n.a. topological orstrongly suborderable spaces X are not w,-metrizable 

if they have “too many isolated points which are too close by the set X’ of all 

nonisolated points of X”, as the Michael line typically shows [7,15]. Therefore, 

similarly as in [7], we have to look for conditions excluding this situation. The main 

tool used hereby will be K-discrete dense subspaces of X. Therefore, in Section 3, 

we generally characterize GO-spaces having K-discrete dense subspaces, for K 2 wo. 

Finally, in Section 4, we shall indicate how w,-metrizable spaces could be charucter- 

ized in terms of g-functions. 

Note that specializing our theorems to w& = w,, yields topological characterizations 

of strongly zero-dimensional metric spaces, i.e., nonarchimedeanly metrizable 

spaces, which are interesting (under a different point of view) by themselves. 

Historical sketches of the whole theory can be found in [7, 17, 21, 231 and in other 

papers listed there. 

1. Nonmetrizable o,-metrizable spaces as a subclass of nonarchimedean spaces 

Let X be a T,-space. For any nonisolated x E X, let q(x) denote the pseudoweight 

of x, i.e., the smallest infinite cardinal K such that {x} is the intersection of K many 

open sets in X. (p(AX) denotes the pseudoweight of AX = {(x, x) Ix E X} in X’. 

DC X is u-discrete (“w,,-discrete”) if D is the union of countably many closed 

discrete subsets D, c X, i < q,. For p > 0, w,-discrete subsets are defined 

analogously, for i < w,. Now we can prove 

Theorem 1.1. 7’he following are equivalent: 

(i) X is w,-metrizuble for p > 0, or X is metrizuble and dim X = 0. 

(ii) X is a nonurchimedeun topological space, q(x) = w/, for any nonisolated x E X, 

and X has an w,-discrete dense subset D c X. 

(iii) X is a nonurchimedeun topological space, ad X 3 wcL, and X has an UP-discrete 

dense subset. (Here, ad X is the smallest (infinite) cardinal K such that the intersection 

of fewer than K many open sets is open.) 

Proof. (i) =$ (ii): Consider (X, T) to be linearly uniformizable. We can assume 

that T is generated by a uniform structure % on X having a well-ordered base 

93 = {Bi 1 i < w,} for its entourages; Bj c B, e i sj. Moreover, we can assume that 

B, 0 Bi = B,, i.e., B; is an equivalence relation on X. This can be done because if 

B, is any entourage in 3, and p > 0, then there is a sequence of entourages 

Bi= Bico,‘B,(,,~ B;(z)=* . . suchthat Bi<.+l,o BiC,,+,,~ B,(,,)and hencen{B,,,,In = 

1, 2, . . .}=: B’” is an entourage of % again satisfying B”’ 0 B(” = B”‘. If p = 0, our 

assumption follows because dim X = 0. Now for any x E X, let B,[x] = {y /(x, y) E B,}. 

Then for all i < co,+,, %‘i = {B,[x] 1 x E X} is a clopen partition of X, and +Zj refines VZi 

whenever j 2 i. Finally, fix i < wW, and from each B, [x] E Y$, take one point y E B, [ x]. 
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These points - all together - form a closed discrete set Di c X. Since 011 generates 

the topology T of X, the union D = U {D, ) i < w,} is dense in X, and we are done. 

Conversely, let us show (ii) + (i): Let X satisfy the conditions of (ii) for some 

regular cardinal w,, and let % be a nonarchimedean base for r; then all BE Ce are 

clopen automatically. Now let D = IJ {Di 1 i < wp} be an @,-discrete subset of X. 

Then - at any x E X - those C E Ce containing x form a monotone local orthobase 

[12, 141, i.e., any intersection is open or consists of x only. By technical reasoning 

we can assume that the union of any chain C, c C, c . . . , C, E %, belongs to %‘, too 

(compare e.g. [15] or [2]). 

Now, for any x E X, let B,(x) be the maximal element of % containing x and at 

most one point of D, i.e., [B,(x) n D,/s 1. {B,(x)/xE X}=: 93, is a cover of X and 

in fact a clopen partition of X. Since for any nonisolated x E X, {C 1 x E C E %‘} is 

monotone, and q(x) = wP, the intersection of fewer than wfi many open sets in X 

is open again. Hence Dci’ = U (0, ( j s i < OJ,} is closed and discrete again, and we 

can proceed inductively. For x E X and i < ow, define Bi(x) to be the maximal basis 

set in %’ containing x and at most one point of IJ {D,/ js i}, i.e., /B;(x) n 

(D,u* ..uDi)]=l. Again, a,={B,( x )I x E X} is a clopen partition of X and 93, 

refines %Ii wheneverj 2 i. Therefore, the family of all 3: = 91i u {{x} (x is an isolated 

point, XE Di} constitute a totally ordered base of a covering uniformity (+I on X. 

To conclude the proof we have to show that % generates the originally given topology 

r. To see this, let x E X be a nonisolated point and U an open set containing x. We 

can assume that U E 55’. Now, since X is T,, U\(x) is open and hence contains 

infinitely many points, especially two distinct points of D, say xk E Dk and x, E D,, 

k < n (remember that every Dk is closed, hence X\D, is open). Further, B,(x) 

must be contained in U, since otherwise - by the nonarchimedean property of (e - 

B,(x) 3 U, hence xk E B,(x) which contradicts the fact that [B,(x)n 

(Qu. . . u Dk u . . . u D,)] < 1. Summarizing {B,(x) 1 i < wcL, x E X} constitutes a 

base for r, and we are done. In this proof we essentially used only the fact that, by 

our conditions, ad X = We. Hence, automatically, (iii) 3 (i) is proved by the same 

argument. 

(ii) + (iii): Also in the above argument it is shown that (ii) implies ad X 2 wP. Cl 

Corollary 1.2 [2]. A nonarc~limedea~ topological space X is metrizable iff it has a 

cT-discrete dense subspace. 

The Michael line (which is gotten from the reals by turning the irrational points 

into isolated points) obviously is a nonarchimedean topological space which does 

not have a m-discrete dense subspace (compare [7]). 

Remark 1.3. From Theorem 1.1 we can conclude most of the characterizations of 

w,-metric spaces (p > 0) given or summed up in [7]. Compare also the examples 

and counter-examples given there. 
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Remark 1.4. It is crucial for the above theorem to ask that all D, c D are closed in 

X. The one-point Lindeliifization D u {x} of a cardinality Cs, discrete space D is 

nonarchimedean but not metrizable since it is not first countable. (More exactly, 

D=(w,+l)-{ 11’ a tm (Y < w,}.) On the other hand, D is a nonclosed discrete subset 

of X. (Obviously, there is an analogue of this example for every wW > o,,.) 

2. w,,-metrizable spaces as special kinds of strongly suborderable spaces 

By a theorem of Herrlich [5], a totally disconnected metric space X is orderable 

iff dim X = O3 (hence every nonarchimedean metrizable space is orderable). Unfortu- 

nately, for every wP > w,,, there exists a nonorderable w,-metrizable space [23]. 

However, we can show that, for j_~ >O, any o,-metrizable space X is strongly 

suborderable, i.e., there exists a linear order 4 on X such that open intervals form 

a local base at any nonisolated point x E X (see [7, p. 1781, which is a direct 

generalization of a method described in [16]). Therefore, it seems natural to con- 

versely ask which strongly suborderable spaces are w,-metrizable. 

Theorem 2.1. The following conditions are equivalent: 

(i) X is w,-metrizable for p > 0 or X is metrizable and dim X = 0. 

(ii) X is strongly suborderable, ( weakly) zero-dimensional, ad X = cp (AX)( = w, ) 
and X has an @,-discrete dense subset. 

Proof. By the comments above and the proof of Theorem 1 .l we only have to show 

(ii) + (i): Let D = U {Q j i < w,} be w,-discrete and dense in X, and if X has a 

first or last point, let them be in D. By our assumption, for any nonisolated point 

x E X, we have q(x) = cp(AX) = wr, i.e., the intersection of fewer than w& many 

open sets is open, and X has a monotone local base of cardinality wlr. Moreover, 

for each j < wP, IJ {II, 1 i < j} = D”’ is closed and discrete, and, obviously, II”’ 3 II”’ 

if j 3 i; DC’) = D, . Finally, let AX = n {U, 1 i < We}, where U, is open in X2. 

Now, since X is suborderable, it follows from our assumptions that X is paracom- 

pact and strongly zero-dimensional, i.e., dim X =0 (see e.g. [7, (i), (iii), p. 1761). 

Now, by induction we construct a topologically compatible covering - uniformity 

similarly to the method in the proof of Theorem 1.1. 

For each j < wP, let 9, be a partition of X into clopen sets B such that (i) 

B x B c Uj; (ii) each B E 93, contains at most one point of D”‘; (iii) for all isolated 

x E D”‘, {x} E CBj3,; (iv) for i S j, %‘j refines 9,; and (v) each B is convex in the chosen 

strong suborder G; that is, if x <y < z and {x, z} c B, then y E B. All this is a routine 

application of ultraparacompactness, strong suborderability, and the fact that ad X = 

wI*. Indeed, by ad X = wP, we can obtain an open cover satisfying (i)-(iv), with the 

additional property that each isolated x E D’-” is in exactly one member of the cover, 

’ Independently proved by P. PapiE, too. 
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namely {x}. Then refine this cover to a clopen partition 9, and replace each P E $%’ 

by its convexity components, i.e., equivalence classes with respect to the relation 

x = y iff x 9 y, and all intermediate points are in P. The fact that these equivalence 

classes are both open and closed follows easily from the same properties of P 

(compare the proof of Theorem 3.6(l) below). 

For each x E X and each i < CO,+, let Ci(x) be the unique member of B3, containing 

x. Since the equivalence relation associated with %I, is finer than U,, and AX = 

n { U, 1 i < w@}, it follows that n {C,(x) 1 i < w,} = {x}. Since X is strongly suborder- 

able and {x} E 9, for some i whenever x is isolated, it follows that {Bi 1 i < co,} is a 

base for a uniformity on X. 0 

Remark 2.2. It is important to note that X was supposed to be strongly suborderable. 

Replacing this assumption by “suborderable” in general we cannot conclude our 

results as seen e.g. from [7, Example 3, p. 1821. By this example, for every regular 

We, there is a dense in itself paracompact suborderable, zero-dimensional space X, 

cp(x) = cp(AX) = wI”, such that intersections of fewer than wlr many open sets are 

open, but X is not w,-metrizable (even not nonarchimedean). 

Corollary 2.3. A T, -space is nonarchimedeanly metrizable ifX is strongly suborderable, 

zero-dimensional, X has a C&-diagonal and a u-discrete dense subset. 

It may be interesting to recall a result of Wouwe [24] who showed that any 

suborderable space with a o-discrete dense subset is perfectly normal, and to recall 

the 15 years old open problem whether every perfectly normal nonarchimedean 

topological space is metrizable (and hence nonarchimedeanly metrizable); see [2, 

12, 14, 151. (We know, that the answer is “no” if there is a Suslin line [7]. And, by 

a result of Purisch, every perfectly normal n.a. topological space is orderable [ 191.) 

3. GO-spaces with UP-discrete dense subspaces 

In the preceding paragraphs, when characterizing w,-metrizable spaces, the most 

important properties were the two named in the heading above. Therefore, in the 

following, we want to investigate these properties in more detail and finally, in this 

realm, we present a new and very general characterization of w,-metrizable spaces4 

Moreover, the following result illuminates the difference between suborderable and 

strongly suborderable spaces, as well. We start by systematically collecting definitions 

and facts (either well known or cited in the preceding paragraphs) which will be 

used in the proof of the main theorem. 

4 Besides, this section throws new light on a paper of Purisch [20], which in some sense will be 

“completed” by the ideas below. 
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Fact 3.1. Every strongly zero-dimensional metrizable space (X, r) is orderable. For 

p > 0, any w,-metrizable space (X, T) is strongly zero-dimensional and (strongly) 

suborderable. In other words, there is a linear order G on (X, T) such that (X, G, T) 

is a CO-space. Moreover, for any nonisolated point x, the open intervals (a, b), 

a < x < b, form a local base at x. We say that 4 “$ts” the w,-metrizable topology r. 

For every wfi > wO, there is a nonorderable w,-metric space [23]. 

Fact 3.2. There is an o,-analogue of the Nagata-Smirnov metrizability theorem: a 

regular space X is w,-metrizable iff it is (1) w,-additive (i.e., the intersection offewer 

than ocI many open sets is open), and (2) X has an w,-locally$nite base ([ll]; see 

also [6,17]). 

Definition 3.3. Let (X, s, r) be a GO-space. A point x is half-isolated if X has a 

local base of nondegenerate half-open intervals of which x is one endpoint. It is 

naturally half-isolated if it has an immediate predecessor or an immediate successor, 

and artzficially half-isolated otherwise. (Because of nondegeneracy it cannot have 

both an immediate predecessor and an immediate successor.) The Sorgenfrey line, 

for example, consists of artificially half-isolated points. 

In the literature, naturally half-isolated points are also called “jump points”, 

whereas artificially half-isolated points are often called “pseudogap points”. Here, 

moreover we exclude nonisolated endpoints from being defined as pseudogap points. 

Definition 3.4. Let (X, s) be a totally ordered set and let S c X. Then A(X, S) - as 

a set - is gotten from X by replacing each x E S by two elements, xt and x-, i.e., 

A(X, S) = (X\S) u {x- 1 x E S} u {x+ lx E S}. Now a linear order on A(X, S) is 

defined as follows: For XE X\S, let x# ={x}, if XE S, let x# ={x-, x+}, xP <x+. 

Now, if x<y, we define x#<y#. (S o, f or example, if x < y, x E S, y E S, we have 

x < xt < y < y’.) Briefly, we can say A(X, S) is the splitting of the points S in 

X: A(X, S) = (X x (0)) u (S x { 1)) with the lexicographic order. 

Definition 3.5. If (X, 4, T) is a GO-space and S c X, then the canonical topology on 

A(X, S) is defined by describing local bases for the “new” points x-, x+ E A(X, S) 

whenever x E S: 

(1) If x is isolated in 7, let xP and xt be isolated points in A(X, S). 

(2) If x is half-isolated on the right in X, let xt be isolated in A(X, S), and the 

intervals (w, x ] form a local base at x . 

(3) If x is half-isolated on the left in X, similarly let xP be isolated in A(X, S), 

and the intervals [x+, w) form a local base at x+. 

(4) If x is neither isolated nor half-isolated in X, the intervals (w, x ] form a 

local base at x , while the intervals [x+, w’) form a local base at x+ in A(X, S). 
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Now let us formulate the main results of this section.’ 

Theorem 3.6. Let (X, s, r) be a strongly zero-dimensional w,-metrizable GO-space. 

Then 

(1) X has a uniformity % with a totally ordered base of partitions into T-clopen 

intervals, and 

(2) the collection of half-isolated points x E X forms an w,-discrete subspace of X. 

Theorem 3.7. Let Y be a strongly zero-dimensional space. Then the following are 

equivalent: 

(i) Y is w,-metrizable. 

(ii) Y is strongly suborderable by a total order s, Y has an w,-discrete dense 

subspace which includes all (naturally) half-isolated points of ( Y, C, r), and Y is 

w,-additive. 

(iii) Y is a GO-space w.r.t. a total order s, such that Y has an w,-discrete dense 

subspace which includes all half-isolated points of ( Y, s, r), and Y is w,-additive. 

Theorem 3.8. Let Y be a strongly zero-dimensional suborderable space. Then the 

following are equivalent: 

(i) Y has an w,-discrete dense subspace, and Y is w,-additive. 

(ii) Y embeds in some A(X, S) with the canonical topology, for some (X, s) where 

s fits some w,-metrizable topology on X. 

(iii) Y embeds in some A(X, S) with the canonical topology for some w,-metrizable 

GO-space (X, s, T). 

Theorem 3.9. Let Y be a strongly zero-dimensional space. Then the following are 

equivalent: 

(i) Y is strongly suborderable, Y has an w,-discrete dense subspace, and Y is 

w,-additive. 

(ii) Y = A(X, S) with the canonical topology for some w,-metrizable GO-space 

(X, C, T) such that s fits T (in particular, (X, T) is strongly suborderable). 

The proofs. The proofs of Theorems 3.6-3.9 will now be given in one bunch, because 

the main ideas and the main steps are similar and they can be combined in a certain 

way. Moreover, the “hierarchy” of the above results will become clearer by arranging 

the proofs in the way we chose in the following. 

Proof of Theorem 3.6(l). Let % be a uniformity with base {So, 1 a < w,} of partitions 

of X into clopen sets with B3, refining CB3, whenever p < CY. For each x and each 

’ Note that specializing the following results to the countable case, wp = o,~, we obtain chacterizations 

of GO-spaces having a r-discrete dense subspace. 
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LY, let %I0 (x) be the unique member of %13, containing x. Given any S3, and any x E X, 

let %?,(x)=Z~(x)u{x}uZ~(x), where 

Z,(x)={yIy~SI~(x),y<x,and ZE%‘~,(X) whenevery<z<x}, 

Zfi(x)={yly~ Be(x), y>x, and ZE %13,(x) whenever x<z<y}. 

Claim. Ve(x) is clopen. 

Once the claim is proven, let %, = { ge, (x) 1 x E X}. 

Now, %‘, is a partition of X into convex sets, meaning that if z, y E 5S0(x) and 

z<w<y, then WE%‘,(X), and if z~%,(x)n%,(y) for (say) x<y, then Se(x)= 

LB3,(y) = %‘a (z) (because %13, is a partition) and hence (e,(x) = V?‘,(y) = g,(z) (since 

%&(z) is easily seen to be the union of all subintervals of Se(z) containing z, we 

have (%‘,,(x)u %,(y))c q,(z), and by similar arguments, g,(x)= ge,(y)= qe,(z)). 

(e, refines %@ whenever %13, refines B3, and so {C,(x) 1 a < w,} is a totally ordered 

basis for a (topologically compatible) uniformity on (X, T). Hence (1) follows as 

soon as we prove the claim: 

Proof of the claim. S’,,(x) is open: since %_(x) is the union of all subintervals of 

S’,(x) containing x, and %13,(x) is open, any endpoint of S”,,(x) has a nbhd V 

contained in S,(x) which is also an interval, so V is a subset of g<,(x). Hence 

y,(x) is open. On the other hand, gU(x) is closed, because any supremum y it has 

in its closure is in Se(x), hence by definition of Z:(x), YE Zt(x)c (e,(x), and 

similar for infima. 

Proof of Theorem 3.6(2). Consider the usual inductive process of giving X a total 

order using { %, 1 a < w,} (described in [7] and indicated in [ 16,231 and (older) 

papers of Kurepa and (possibly) PapiE). For any x E X, we have {x}c 

n { %a (x) 1 a c co&}, and x < y iff there exists (Y < oIL such that ze,(x) < %_(y) in the 

total order imposed on %‘_. Morover, {S?,(x) 1 a < co,} is a local base at x, so that 

if x is half-isolated, it is actually an endpoint of some g,(x). But any ze(x) has 

at most two endpoints and - as shown above - {‘S’,(x) (x E X} is a discrete collection 

for any fixed (Y < wp. Hence the set of all half-isolated points is (either empty or) 

an w,-discrete subset of X. 

Proof of Theorem 3.7. (i) 3 (ii) 3 (iii): Think of Fact 3.1 and combine Theorem 

2.1 with Theorem 3.6(2). By Theorem 2.1, (Y, T) has an w,-discrete subspace 

D = U {D, 1 i < w,} which, by Theorem 3.6, can be made to contain all (naturally) 

half-isolated points w.r.t. any order 4 that fits 7. Clearly, (Y, 6, T) is a GO-space. 

Further any half-isolated point is narurally half-isolated, since Y is strongly 

suborderable. 

The proof of (iii) 3 (i) will be combined with the proofs of parts (i) 3 (ii) of 

Theorems 3.8 and 3.9 later on. 
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Proof of Theorem 3.8. (ii) =$ (iii): Obvious. 

(iii) 3 (i): By the preceding theorems, we know, that (X, s) has an w,-discrete 

subspace D = lJ {Di ( i < w,} which contains all half-isolated and isolated points. 

Then l_. {d# ) d E D} = D# is dense and w,-discrete, because if F is closed (respec- 

tively discrete) in X, then U {f” [SE F} is closed (respectively discrete) in A(X, S), 

by definition of the canonical topology. And these properties carry over to Y n D 

as a subspace of Y. Moreover, the fact that X is w&-additive carries over routinely, 

first to A(X, S) and then to Y. 

(i) + (ii): Will be proved below, together with (i) + (ii) of Theorem 3.9 and 

(iii) a (i) of Theorem 3.7. 

Proof of Theorem 3.9. (ii) + (i): Essentially the same as Theorem 3.8 (ii) 3 (i). 

Finally, (i) + (ii) of Theorem 3.9 will be given by the following reasoning. 

Combined proof (of (iii) + (i) of Theorem 3.7 and (i) 3 (ii) of Theorems 3.8 and 

3.9). Let D=U{DiI I <co,} be the dense subset hypothesized, with every Di closed 

and discrete in Y. We may assume that any (possible existing) endpoint of Y is in 

D,. Moreover, we can assume Dj c Dj whenever i<j, since Y is w&-additive 

(compare the proof of Theorem 1.1). 

Step 1. D, induces a partition of Y into r-clopen intervals each of which meets 

it in at most one point, as follows: 

(a) If d E Do, let I’(d) be a r-open, r-closed on the right interval defined as 

follows. If d is isolated, or half-isolated on the right, we make Z+(d) = 0. If d is 

neither, but has an immediate D,,-successor d’, let I+(d) be an initial segment of the 

interval (d, d’); this can be done using strong zero-dimensionality of Y. If d is 

neither and does not have an immediate D,-successor, let Z+(d) = {y E Y 1 y > d and 

there is no d’E D, such that d < d’ay}. Since D,, is r-closed and discrete, I+(d) 

is r-open then, and because, in this case now, {d’E D,I d’> d} has no least element, 

I+(d) is r-closed on the right. 

Similarly, ford E D,, let Z-(d) be a r-open r-closed on the left interval constructed 

as follows: if d is isolated or half-isolated on the left, let I-(d) =0. If d is neither 

but has an immediate D, predecessor d”, let I-(d) = (d”, d)\Z+(d”). If d is neither 

and does not have an immediate D,-predecessor, let I-(d) = {_v E Y 1 y < d and there 

is no d’E D, such that y s d’< d}. Similar to the above, I-(d) is r-open and r-closed 

on the left. 

Now, for each d E D,, let Z(d) = I-(d) u {d} u I’(d). It is easy to see that I(d) 

is a r-clopen interval of T. Also, if d, , d, E D, and d, < d2, then I(d,) n I(d,) is 

empty. This is clear by construction if d, is the immediate D,-predecessor of d,; 

otherwise, there exists d E D, such that d, < d < d,, and then I+(d,) does not contain 

d (by construction of I+(d)) and neither does I-(d,), and since the I(di) are 

intervals they must be disjoint. 

(b) Now if y E Y\D, and y has both an immediate DO-predecessor d and an 

immediate DO-successor d’, then d’ is the immediate D,-successor of d and, therefore, 
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y is in either Z+(d) or I-(d’) unless we have both: Z+(d) and I-(d’) are empty. In 

that case, y is not in any Z(d”), d”~ DO. 

If, secondly, ye Y\DO and has an immediate DO-successor (respectively DO- 

predecessor) d but no immediate DO-predecessor (respectively DO-successor), then 

y E Z-(d) (respectively y E Z+(d)) unless Z-(d) (respectively Z’(d)) is empty, in 

which case y is not in any Z(d’), d’E D,. 

Thirdly, if y E Y\ D, and y has neither an immediate D,-successor nor an immedi- 

ate DO-predecessor, then y & I._! {Z(d) 1 d E D,}. And, for any such y, let Z(y) be the 

union of all intervals containing y and missing D,, i.e., Z(y) = {y’~ Y 1 either y’z y 

and there is no d E D, s.t. y s d 4 y’, or y’s y and there is no d E D,, s.t. y’s d s y}. 

Then it is easy to see that {Z(y) 1 y sf l_, {Z(d) 1 d E D,}} is a partition of Y\lJ {Z(d) 1 d E 

D,} into open intervals. So, together with {Z(d) 1 d E DO} we have a partition of Y 

into T-open, hence T-clopen, intervals, which finishes Step 1. 

Step 2. Now assume that we are given a partition %,, CY < wP, of Y into clopen 

intervals. Each of these meets D, in a closed discrete subspace, so we can use the 

intersection of D, with each member of a,, to subdivide it into -r-clopen subintervals, 

just as Do subdivided all of Y into T-clopen subintervals (Step 1). In particular, 

each subinterval contains at most one member of D, (compare the proof of 

Theorem 1.1). 

Let Q, be the partition obtained from DO. In general, if “II, has been defined for 

all /I < (Y, apply D,, to 021,, as prescribed, and let OUu+, be the resulting refinement 

of %,,. If QB has been defined for all Z3 < (Y and cy is a limit ordinal <w,, let %21, 

be the common refinement of the preceding 021,. By the fact that intersection of less 

than wP many open sets is open (w,-additivity was hypothesized), %, is a partition 

into r-(cl)open intervals. 

Step 3. Let PU, be the common refinement cf the Ou,,, (Y < wP. Because D is 

dense, and each interval of Qu,+, contains at most one member of D, for all LY (see 

Step 2), and D is the union of the D,, it follows that each member of BWi has at 

most two points. 

Every isolated point d of Y is in D,, for some (Y < wP. Thus the analogues of 

Z+(d) and Z-(d) are empty, and so {d}E au+,. Consequently, if d is isolated in Y, 

then {d}E 6P+. 

If {Y, Y’l E RI,, and y < y’, then neither point is isolated by what we have just 

said, and y’ is the immediate successor of y, so that both y and y’ are naturally 

half-isolated. 

If, finally, (~1 E PC+ and y is neither isolated nor half-isolated, then the open 

intervals around y form a local base there, and y is not an endpoint of the unique 

member Z,,(y) of (each) 011, containing y, so that these open intervals form a local 

base at y. 

Step 4 (construction of A(X, S)). Let 2 = {y E Y 13~‘~ Y such that {y, y’} E ?P,+ 

and y’> y}, and let X = Z u {y E Y 1 {y} E P’,,}. Further, let S be the union of Z with 

all those points of Y which are artificially half-isolated in Y. Finally, let X be given 

the order topology augmented by all singletons that are isolated in Y. 
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Claim. (X, G) is w,-metrizable in this topology. 

(The proof of the claim will be given after the next step, so the “red thread” will 

not be cut.) 

Once the claim is proven, we can embed Y into A(X, S) as follows: 

Step 5. Let .f: Y + A(X, S) be defined as follows: If y E 2, then y E S and we let 

f(y) = y-. If y is the immediate successor of some z E Z, then {z, y} E PUP and z E S, 

and we let f(y) = z+. If y is artificially half-isolated in Y, say the intervals (y’, y] 

form a local base at y, although y has no immediate successor, then let f(y) = y-. 

Similarly, if the intervals [y, y’) from a local base at y although y has no immediate 

predecessor, then let f(y) = y+. The only remaining case is where y .@ S and in this 

case we have f(y) = y. 

We now show that f is an embedding: This is obvious in case of those points 

which are isolated and also in case of those points which are neither isolated nor 

half-isolated. The half-isolated points y E Y break up into three cases: 

Case 1: y is art$cially half-isolated. Then y E X, and y is neither isolated nor 

half-isolated in X. So yP has a local base of sets of the form (w, y-1 in A(X, S) 

with w < y- and w not the immediate predecessor of y , while y+ has a similar 

local base of sets [y’, w). No matter which way y is half-isolated in Y, f sends it 

to the “correct” member of {y-, y’}. 

Case 2: y is half-isolated and {y, y’} E 9+ for some y’# y. (Clearly, in this case, 

y is naturally half-isolated.) Then either y or y’ is in X, and is neither isolated nor 

half-isolated there (i.e., in X) and we can argue similarly to Case 1. 

Case 3: y is naturally half-isolated and {y} E 9+. Say y has an immediate successor 

but no immediate predecessor in Y, i.e., its intervals are of the form (w, y] in Y. 

Now there is some 021, in which y and its immediate successor y’ are in separate 

members of Qa, and then y is the greatest point of its interval while y’ is the least 

point of its interval. This makes y naturally half-isolated in the order topology in 

X, and since y@ S (by definition of S), y keeps that status in A(X, S). 

Proof of the claim. Note that Y\X consists of Z’ = {y E Y) y has an immediate 

predecessor in Z}, these points being naturally half-isolated have no immediate 

successors in Y; similarly, the points in Z do not have immediate predecessors in 

Y, and so if z E Z, then z is not an endpoint of the interval of 021, (a < w,) containing 

it, neither is its immediate successor (which follows by definition of Z). As (Y ranges 

over wP, the trace of these intervals on X close down on {z}, and form a local base 

there in the order (LOTS) topology on X. 

For arti$ciall_y half-isolated points of Y, the argument is similar; for them too, the 

021, will trace on X a local base in the order topology. This is also true of naturally 

half-isolated points of X\Z, except that these will be the upper (or lower) endpoint 

of some members of some %21,, and then for all Q,,, y> a, of course. 

Finally, isolated points of X are isolated in Y and hence their singleton sets get 

into some %!&, automatically. (Note that the only pseudogap points of X are isolated 

pseudogap points of Y Hence X is strongly suborderable.) 
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Altogether, the traces of the %,, (Y < wP,, form a covering uniformity on X of the 

kind we are looking for which is compatible with the (order) topology of X by 

construction. In other words, the order < on X fits an w,-metrizable topology on X. 

Conclusion. This now completes the proof of (i) + (ii) in Theorem 3.8. It also 

completes the proof of (i) + (ii) in Theorem 3.9, since there we have a strong 

suborder on Y, and so there are no artijicially half-isolated points, so that f is a 

surjection as well as an embedding, i.e., Y=A(X, S). To see how (iii) 3 (i) of 

Theorem 3.7 follows, we have to add some more arguments: When we form A(X, S) 

then S is an w,-discrete subspace in X by the assumption in (iii) of Theorem 3.7. 

(D includes all half-isolated points of Y.) But, since Y is embedded into A(X, S), 

and w,-metrizability is hereditary, we will be done as soon as we have shown the 

following 

Lemma 3.10. If (X, s, T) is an w,-metrizable GO-space and S is an w,-discrete 

subspace of X, then A(X, S) is w,-metrizable in the canonical topology. 

Proof. By the w,-analogue of the Nagata-Smirnov theorem (see “Fact 3.3” at the 

beginning of Section 3 and [6, ll]), (X, T) has an w,-locally finite base, and since 

S is w&-discrete, it follows from the definition of the natural topology (which A(X, S) 

is endowed with) that A(X, S) has such a base, too. Hence, A(X, S) is w,-metrizable, 

and we are done. 0 

(Analogously, this latter result can be derived from the w,-analogue of Bing’s 

metrization theorem, which says that a regular space is metrizable iff it has a 

u-discrete base.) 

Remark 3.11. If in the above proof of (iii) j (i) of Theorem 3.7, we additionally 

hypothesize that Y is strongly suborderable (which, in fact, is condition (ii)), then 

S is empty, because there are no artificially half-isolated points, 2 = 0 always and 

A(X, S) = X. Hence (i) follows immediately, and no lemma is needed, indeed. 

Remark 3.12. It would be natural to inquire whether the following statement - 

analogous to Theorem 3.8(iii) - is equivalent to the two statements in Theorem 3.9: 

Y = A(X, S) with the canonical topology for some w,-metrizable GO-space 

(X, s, r). 
The difficulty is in showing that A(X, S), when defined using 4, is strongly 

suborderable. Of course, we can reorder X to give it a strong suborder, and the 

resulting A( X, S) would also be strongly suborderable, but the topology on A( X, S) 

depends upon the order as well as the topology. Therefore, more generally, we can 

ask: 
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Problem. If X is a strongly suborderable space, and s is an order making X a 

GO-space, and SC X, is A(X, S) with the canonical topology (w.r.t. S) strongly 

suborderable? 

4. Characterization of o,-metrizable spaces in terms of g-functions 

g-functions are an important tool in the theory of generalized metric spaces. 

Recently, Nagata [ll] has published a survey paper on this subject, which also 

contains new results. 

For any topological space (X, 7) a function g : N x X + T is a “g-function” [ 111. 

We can assume that for any n E N and x E X, g(n, x) is a (not necessarily open) 

neighborhood of x. g-functions can play a major role in characterizing various 

classes of generalized metric spaces and in describing the difference between certain 

classes of such spaces and metrizable spaces [ 111. Therefore it would be worthwhile 

to characterize w,-metrizable spaces in terms of g-functions, too. First, let us take 

care of the case wP = wO. 

Theorem 4.1. The following are equivalent: 

(i) X is a n.a. metrizable space; 

(ii) X is a n.a. topological space having a g-function satisfying 

ifpEg(n,x,) forallnEN(, then (x,,)+p; 

(iii) X is a n.a. topological space having a g-function satisfying 

ifpEg(n,x,) andx,eg(n,y,,) foralln, then (y,)+p. 

(*) 

(**) 

Proof. Clearly n.a. metric spaces satisfy (ii) and (iii), since %‘,, ={B,,,(x)}= 

KvId(x,y)<ll >I n x E X} is a clopen partition of X and we can take g(n, x) = 

B,,,(x). 
Further, by a result of Heath, condition (**) characterizes c-spaces, and by [ 15, 

Theorem 131 any n.a. a-space is metrizable and hence na. metrizable. Finally, 

condition (*) characterizes semistratifiable spaces. But any na. topological space 

is monotonically normal and any monotonically normal semistratifiable space is 

stratifiable and hence [3] a a-space. Therefore, condition (*) implies (**) in our 

case, and (**) guarantees metrizability of the given n.a. topological space. q 

Remark 4.2. In [25], Vaughan generalized the concept of stratifiable spaces to higher 

cardinals when defining “linearly stratifiable spaces”. By using a result of Nyikos, 

the authors in [7] have shown that the following are equivalent: (i) X is metrizable 

and dim X =0 or X is w,-metrizable for p > 0; (ii) X is suborderable, zero- 

dimensional and stratifiable over w,+ (> w,J. From this result and its method of 

proof it is clear how Theorem 3.6 can be generalized to yield a characterization of 

w,-metrizable spaces for p > 0. We have to generalize a g-function to be a function 
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g : Ok x X + 7, and in some cases, we must add ad X = w,, (which for n.a. topological 

spaces is equal to cp(x) = We for any nonisolated point x E X). 

A very typical example for a large number of theorems is the following: 

Theorem 4.3. The following are equivalent: 

(i) X is w,-metrizable (p > 0) or X is metrizable and dim X = 0; 

(ii) X is (1) suborderable, (2) e -d’ z ro lmensional, and (3) has a g-function g : oIL x 

X + T with property (*): “iffor all i < w*,, p E g(i, xi), then (xl 1 i < ~+)+p”. 

Proof. (i) 3 (ii): Let (X, d) be w,-metrizable and d :X’-, G where (G, s, +) is a 

linearly ordered Abelian group and (E, (i< w,)-+ 0 in G with the order topology 

(i <j 3 Ed > &j > 0). We already know that (1) and (2) are satisfied, and obviously 

g( i, x) = B,(x) = {y E X 1 d(x, y) < E,} satisfies property (*). Conversely, let us show 

(ii) j (i): Similar to the case 6~~ = wO, the existence of a g-function with property 

(*) characterizes linear semistratifiability and, because X is monotonically normal, 

X is linearly stratifiable (in the sense of Vaughan [25]). Now, since by an old result 

of Nyikos (see e.g. [7]) any linearly stratifiable suborderable space is linearly 

uniformizable, we are done. 0 

Note added in proof 

Meanwhile, Purisch has shown that the answer to the problem posed just before 

Section 4 is negative: Let X = C -{x E C 1 x is isolated on the left}, where C is the 

Cantor set. Let S be the set of two-sided limit points of C (neither isolated nor 

half-isolated). (S is sometimes called the irrational points of C or the inaccessible 

points of C.) Since X is a totally disconnected set of reals, it is orderable (see I.L. 

Lynn, Linearly orderable space, Proc. Amer. Math. Sot. (1962); in a more general 

setting see [5]). But A(X, S) is not strongly suborderable since it has no isolated 

points and it is not orderable by Example 3 in: S. Purisch, Orderability of GO 

spaces whose pseudogaps are few or scattered about in: Z. Frolik, ed., Proceedings 

Sixth Prague Topological Symposium, 1986 (Heldermann, Berlin, 1988). 

Note also this example shows that the analogue of Theorem 3.8(iii) in Remark 

3.12, is not equivalent to the two statements in Theorem 3.9. 
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