68 research outputs found

    Sustainable intensification and diversification of maize-based farming systems in Malawi

    Get PDF

    Sustainable Agriculture

    Full text link

    Bacteria and Competing Herbivores Weaken Top–Down and Bottom–Up Aphid Suppression

    Get PDF
    Herbivore suppression is mediated by both plant defenses and predators. In turn, plant defenses are impacted by soil fertility and interactions with soil bacteria. Measuring the relative importance of nutritional and microbial drivers of herbivore resistance has proven problematic, in part because it is difficult to manipulate soil-bacterial community composition. Here, we exploit variation in soil fertility and microbial biodiversity across 20 farms to untangle suppression of aphids (Brevicoryne brassicae) through bottom–up and top–down channels. We planted Brassica oleracea plants in soil from each farm, manipulated single and dual infestations of aphids alone or with caterpillars (Pieris rapae), and exposed aphids to parasitoid wasps (Diaeretiella rapae) in the open field. We then used multi-model inference to identify the strongest soil-based predictors of herbivore growth and parasitism. We found that densities of Bacillus spp., a genus known to include plant-growth-promoting rhizobacteria, negatively correlated with aphid suppression by specialist parasitoids. Aphid parasitism also was disrupted on plants that had caterpillar damage, compared to plants attacked only by aphids. Relative abundance of Pseudomonas spp. bacteria correlated with higher aphid growth, although this appeared to be a direct effect, as aphid parasitism was not associated with this group of bacteria. Non-pathogenic soil bacteria are often shown to deliver benefits to plants, improving plant nutrition and the deployment of anti-herbivore defenses. However, our results suggest that these plant growth-promoting bacteria may also indirectly weaken top–down aphid suppression by parasitoids and directly improve aphid performance. Against a background of varying soil fertility, microbial biodiversity, competing herbivores, and natural enemies, we found that effects of non-pathogenic soil microbes on aphid growth outweighed those of nutritional factors. Therefore, predictions about the strength of plant defenses along resource gradients must be expanded to include microbial associates

    Agro-Ecological Class Stability Decreases in Response to Climate Change Projections for the Pacific Northwest, USA

    Get PDF
    Climate change will impact bioclimatic drivers that regulate the geospatial distribution of dryland agro-ecological classes (AECs). Characterizing the geospatial relationship between present AECs and their bioclimatic controls will provide insights into potential future shifts in AECs as climate changes. The major objectives of this study are to quantify empirical relationships between bioclimatic variables and the current geospatial distribution of six dryland AECs of the inland Pacific Northwest (iPNW) of the United States; and apply bioclimatic projections from downscaled climate models to assess geospatial shifts of AECs under current production practices. Two Random Forest variable selection algorithms, VarSelRF and Boruta, were used to identify relevant bioclimatic variables. Three bioclimatic variables were identified by VarSelRF as useful for predictive Random Forest modeling of six AECs: (1) Holdridge evapotranspiration index; (2) spring precipitation (March, April, and May); and (3) precipitation of the warmest 4-month season (June, July, August, and September). Super-imposing future climate scenarios onto current agricultural production systems resulted in significant geospatial shifts in AECs. The Random Forest model projected a 58 and 63% increase in area under dynamic annual crop-fallow-transition (AC-T) and dynamic grain-fallow (GF) AECs, respectively. By contrast, a 46% decrease in area was projected for stable AC-T and dynamic annual crop (AC) AECs across all future time periods for Representative Concentration Pathway (RCP) 8.5. For the same scenarios, the stable AC and GF AECs showed the least declines in area (8 and 13%, respectively), compared to other AECs. Future spatial shifts from stable to dynamic AECs, particularly to dynamic AC-T and dynamic GF AECs would result in more use of fallow, a greater hazard for soil erosion, greater cropping system uncertainty, and potentially less cropping system flexibility. These projections are counter to cropping system goals of increasing intensification, diversification, and productivity

    Agronomic Performance of Perennial Grain Genotypes in the Palouse Region of the Pacific Northwest, USA

    Get PDF
    Annual plants are currently the dominant growth habit for grain production systems but often create agroecosystems with negative environmental consequences. Developing grains with a perennial growth habit provides an opportunity to produce staple crops in a more environmentally beneficial manner. Amphiploids of perennial tall wheatgrass (Thinopyrum elongatum) and common annual wheat (Triticum aestivum) have been produced for wheat-like traits while exhibiting post-sexual cycle regrowth (PSCR). Here we report results from two experiments at two locations in the Palouse region of the U.S. Pacific Northwest (PNW) designed to (1) evaluate a subset of the current perennial grain germplasm base and (2) test post-harvest management strategies on key perennial growth habit traits. The first experiment evaluated 18 putative perennial amphiploid lines, two annual wheat varieties, and one intermediate wheatgrass variety (Thinopyrum intermedium) for yield, PSCR, key agronomic traits, and grain quality characteristics. Results from this trial showed mean yields ranged from 713 to 2874 kg/ha among the amphiploids and 1,627 to 6,867 kg/ha with the annual wheat varieties. Variation across the amphiploids was found for key agronomic and quality traits, indicating potential for continued selection and improvement. When compared to the two annuals, the four highest-yielding amphiploids produced the same yield at one location but 50–60% less at the other. Amphiploids were generally taller with increased tiller number, flowered later, had lower leaf chlorophyll content, and decreased threshability, compared to annual varieties. Regarding grain qualities, amphiploids had lower test weights and thousand kernel weights, smaller kernel diameters, lower starch content, and higher protein, ash, and fiber. The second experiment investigated the effect of post-harvest residue management on PSCR and winter survival of two amphiploids using mowing, burning, and a control. Mowing the residue and PSCR significantly increased winter survival across both amphiploids at one location from 3% in the control to 63% in the mowed treatment. Burning the residue did not improve survival. Our results address three important challenges in perennial grain development in the Palouse region: selecting a stable perennial habit, increasing grain yield, and improving marketable grain quality traits. Each of these challenges will require significant research efforts by plant breeders and agronomists prior to widespread adoption of perennial grains in the Palouse region of the PNW

    Organic farming provides reliable environmental benefits but increases variability in crop yields: a global meta-analysis

    Get PDF
    To promote food security and sustainability, ecologically intensive farming systems should reliably produce adequate yields of high-quality food, enhance the environment, be profitable, and promote social wellbeing. Yet, while many studies address the mean effects of ecologically intensive farming systems on sustainability metrics, few have considered variability. This represents a knowledge gap because producers depend on reliable provisioning of yields, profits, and environmental services to enhance the sustainability of their production systems over time. Further, stable crop yields are necessary to ensure reliable access to nutritious foods. Here we address this by conducting a global meta-analysis to assess the average magnitude and variability of seven sustainability metrics in organic compared to conventional systems. Specifically, we explored the effects of these systems on (i) biotic abundance, (ii) biotic richness, (iii) soil organic carbon, (iv) soil carbon stocks, (v) crop yield, (vi) total production costs, and (vii) profitability. Organic farms promoted biotic abundance, biotic richness, soil carbon, and profitability, but conventional farms produced higher yields. Compared to conventional farms, organic farms had lower variability in abundance and richness but greater yield variability. Organic farms thus provided a “win-win” (high means and low variability) for environmental sustainability, while conventional farms provided a “win-win” for production by promoting high crop yields with low variability. Despite lower yields, and greater yield variability, organic systems had similar costs to conventional systems and were more profitable due to organic premiums. Our results suggest certification guidelines for organic farms successfully promote reliable environmental benefits, but greater reliance on ecological processes may reduce predictability of crop production

    Identifying Farming Strategies Associated With Achieving Global Agricultural Sustainability

    Get PDF
    Sustainable agroecosystems provide adequate food while supporting environmental and human wellbeing and are a key part of the United Nations Sustainable Development Goals (SDGs). Some strategies to promote sustainability include reducing inputs, substituting conventional crops with genetically modified (GM) alternatives, and using organic production. Here, we leveraged global databases covering 121 countries to determine which farming strategies—the amount of inputs per area (fertilizers, pesticides, and irrigation), GM crops, and percent agriculture in organic production—are most correlated with 12 sustainability metrics recognized by the United Nations Food and Agriculture Organization. Using quantile regression, we found that countries with higher Human Development Indices (HDI) (including education, income, and lifespan), higher-income equality, lower food insecurity, and higher cereal yields had the most organic production and inputs. However, input-intensive strategies were associated with greater agricultural greenhouse gas emissions. In contrast, countries with more GM crops were last on track to meeting the SDG of reduced inequalities. Using a longitudinal analysis spanning 2004–2018, we found that countries were generally decreasing inputs and increasing their share of agriculture in organic production. Also, in disentangling correlation vs. causation, we hypothesize that a country's development is more likely to drive changes in agricultural strategies than vice versa. Altogether, our correlative analyses suggest that countries with greater progress toward the SDGs of no poverty, zero hunger, good health and wellbeing, quality education, decent work, economic growth, and reduced inequalities had the highest production of organic agriculture and, to a lesser extent, intensive use of inputs
    • …
    corecore