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Climate change will impact bioclimatic drivers that regulate the geospatial distribution

of dryland agro-ecological classes (AECs). Characterizing the geospatial relationship

between present AECs and their bioclimatic controls will provide insights into potential

future shifts in AECs as climate changes. The major objectives of this study are to

quantify empirical relationships between bioclimatic variables and the current geospatial

distribution of six dryland AECs of the inland Pacific Northwest (iPNW) of the United

States; and apply bioclimatic projections from downscaled climate models to assess

geospatial shifts of AECs under current production practices. Two Random Forest

variable selection algorithms, VarSelRF and Boruta, were used to identify relevant

bioclimatic variables. Three bioclimatic variables were identified by VarSelRF as useful

for predictive Random Forest modeling of six AECs: (1) Holdridge evapotranspiration

index; (2) spring precipitation (March, April, and May); and (3) precipitation of the warmest

4-month season (June, July, August, and September). Super-imposing future climate

scenarios onto current agricultural production systems resulted in significant geospatial

shifts in AECs. The Random Forest model projected a 58 and 63% increase in area

under dynamic annual crop-fallow-transition (AC-T) and dynamic grain-fallow (GF) AECs,

respectively. By contrast, a 46% decrease in area was projected for stable AC-T

and dynamic annual crop (AC) AECs across all future time periods for Representative

Concentration Pathway (RCP) 8.5. For the same scenarios, the stable AC and GF AECs

showed the least declines in area (8 and 13%, respectively), compared to other AECs.

Future spatial shifts from stable to dynamic AECs, particularly to dynamic AC-T and

dynamic GF AECs would result in more use of fallow, a greater hazard for soil erosion,

greater cropping system uncertainty, and potentially less cropping system flexibility.

These projections are counter to cropping system goals of increasing intensification,

diversification, and productivity.
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INTRODUCTION

Changing climatic conditions have resulted in substantial shifts
in the geographic range of plant and animal species in natural
ecosystems (Gonzalez, 2001; Wilson et al., 2005; Pauli et al.,
2007; Chen et al., 2011) and are predicted to continue in the
future (Schrag et al., 2008; Lawler et al., 2009; Monadjem et al.,
2013). Likewise, single or multiple crop agro-ecosystems within
a biophysical and socio-economic context have been affected by
changing climatic variables (Kumar et al., 2013; Zhang et al.,
2013). It follows that shifts in the geographic suitability of crop
species/systems would occur in response to a changing climate
(Evangelista et al., 2013; Ovalle-Rivera et al., 2015).

Assessing potential impacts of climate change on agro-
ecosystems would benefit from classification systems that are
dynamic and reflective of differences in the spatial distribution
of land use/cover over time. Considering this goal, a new agro-
ecosystem classification system, identified as dynamic agro-
ecological classes (AECs) was developed for the dryland cropping
region of the inland Pacific Northwest (iPNW; Huggins et al.,
2014b). The AECs deviate from existing frameworks that classify
agro-ecosystems based strictly on environmental drivers (e.g.,
soil, climate, and physiography) with relatively static boundaries,
such as agro-climatic zones (Douglas et al., 1992), Ecoregions
(US-EPA, Omernik andGriffith, 2014), andMajor Land Resource
Areas (USDA-NRCS, 2006). The AECs are based on the actual
annual land use/cover derived from the Cropland data layer
(USDA-NASS, 2008–2015). This classification approach for
defining AECs provides the opportunity to quantify and test
hypotheses regarding the drivers of spatio-temporal changes in
cropping systems.

Currently, dryland cropping systems of the iPNW are
fundamentally influenced by climatic gradients of temperature
and precipitation (Schillinger et al., 2006). The dominant
rotation practiced in regions with the lowest annual precipitation
and highest annual temperatures is winter wheat–summer
fallow which corresponds to the grain fallow class of AECs
(Huggins et al., 2014b). This 2-year rotation includes a year
of fallow to increase stored soil water that further ensures
successful production of winter wheat. Grain-fallow systems
become less prevalent in wetter portions of the iPNW where
annual cropping systems dominate. Consequently, cropping
system intensification progresses from the grain-fallow AEC
with >40% annual fallow to the annual crop-fallow transition
AEC (>10 to ≤40% annual fallow) and the annual cropping
AEC (≤10% annual fallow). As climatic gradients influence crop
choices and the use of fallow across the iPNW, we hypothesize
that bioclimatic variables may explain significant geographic
variations in AECs. In turn, a geospatial model of AECs based
on bioclimatic variables may be used to project potential shifts in
regional AECs under future climate scenarios.

Ecological studies that have assessed species distribution and
projected changes in response to future climates often use
and compare a variety of methods. These methods include
generalized additive models (Estes et al., 2013), generalized
linear models (Pompe et al., 2008), Artificial Neural Networks
(Rasztovits et al., 2012), Random Forest (Schrag et al., 2008;

Lawler et al., 2009; Chang et al., 2014; Langdon and Lawler, 2015),
and maximum entropy modeling (MaxEnt; Monadjem et al.,
2013; Clark et al., 2014; Ren et al., 2016). Here we use Random
Forest modeling to assess potential regional shifts in AECs for
the iPNW.

Our objectives are the following: (1) identify bioclimatic
predictors which can discriminate among current AECs using
two different Random Forest variable selection methods; (2)
assess the predictive capacity of the geospatial models for current
AECs using bioclimatic variables; (3) use future climate scenarios
to predict changes in identified bioclimatic variables; (4) model
regional shifts in AECs that would result if future climate
scenarios were imposed on current agricultural systems; and (5)
interpret the relevance of any AEC shifts in terms of sustainable
agricultural intensification, vulnerability to resource degradation,
and priorities for agricultural research.

MATERIALS AND METHODS

Current Climate, Bioclimatic Variables, and
AECs
The iPNW study region covering the lower elevations across
eastern and central Washington, north-central Oregon, and
northern Idaho has an extent of 9.4 million ha and is comprised
of three dryland agroecosystem classes (AECs): (1) annual crop
(AC); (2) annual crop-fallow-transition (AC-T); and (3) grain
fallow (GF; Huggins et al., 2014b). The climate is generally
Mediterranean-like (Schillinger et al., 2006), with cold, wet
winters and warm to hot, dry summers. Annual average
precipitation varies across the region with around 150 mm in lee
of the Cascade Range in central Washington to more than 1,400
mm across the eastern portion of the study region in northern
Idaho. Bioclimatic variables are derivatives of temperature and
precipitation and variables considered biologically important for
Mediterranean climates have been identified (Peinado et al.,
2012). Here, we use 44 previously identified bioclimatic variables
for empirical modeling (Table 1). Not included are potential
future effects of elevated atmospheric CO2 levels on bioclimatic
variables.

Cropland data layer derived AECs for dryland annual crop,
annual crop-grain fallow-transition and grain fallow in raster
layers (30 × 30m resolution) were used for each of the
years 2007–2014 (Huggins et al., 2015). The rasterized AEC
information from 8 years were further combined into one map
layer by categorizing each dryland AEC into two subclasses using
the raster calculator tool in ArcGIS (version 10.3.1, ESRI, 2011):
(1) stable dryland AECs, where pixels were consistently the same
dryland class for 2007–2014 and; (2) dynamic dryland AECs,
where pixels changed classes during the 8-year period (Huggins
et al., 2015). Identifying stable and dynamic AEC subclasses
resulted in the development of a classification comprised of six
AECs. The resultant AEC layer was then brought to a coarser
scale of 4× 4 km, using the zonal statistics and cell statistics tool
in ArcGIS (Figure 1).

Gridded climate data from years 1981–2010 was obtained
from Abatzoglou (2013). Daily maximum temperature,
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TABLE 1 | Bioclimatic variables derived from climate data.

Name Units Bioclimatic variable description

ARI Unitless Aridity index (ARI = TEV/P)

BIOT ◦C Holdridge annual biotemperature

COI ◦C Continentality Index (COI = Tmax – Tmin)

HBIO Unitless Holdridge evapotranspiration index (HBIO =HEV/P)

HEV mm Holdridge potential yearly evapotranspiration

Hm mm Humid months; months in which P ≥ 2T

M ◦C Average maximum temperature of the coldest

month

m ◦C Average minimum temperature of the coldest month

OEI Unitless Ombro-Evapotranspiration Index (OEI = 10

(Pp/TEV))

OTI mm/◦C Ombrothermal index (OTI = Pp/Tp)

OTI2 mm/◦C Ombrothermal index of the two driest consecutive

months of the year

OTI3 mm/◦C Ombrothermal index of the three driest consecutive

months of the year

OTI2w mm/◦C Ombrothermal index of the two warmest

consecutive months of the year

P mm Yearly average precipitation

Pau mm Autumn precipitation (September + October +

November)

%Pau % Percentage autumn precipitation

Pcm1 mm Precipitation of the warmest four months in the year

%Pcm1 % Percentage precipitation of the warmest four

months

Pcm2 mm Precipitation of the four months before Pcm1

%Pcm2 % Percentage precipitation of the four months before

Pcm1

Pcm3 mm Precipitation of the four months after Pcm1

%Pcm3 % Percentage precipitation of the four months after

Pcm1

Phm mm Total precipitation for the humid months

%Phm % Percentage precipitation of the humid months

%Pj-s % Percentage precipitation from June to September

Pp mm Positive precipitation; total precipitation of those

months whose mean temperature is higher than

0◦C

Ps2 mm Precipitation of the two warmest consecutive

months of the year

Psp mm Spring precipitation (March + April + May)

%Psp % Percentage spring precipitation

Psu mm Summer precipitation (June + July + August)

%Psu % Percentage summer precipitation

Pwi mm Winter precipitation (December + January +

February)

%Pwi % Percentage winter precipitation

SEPI Unitless Seasonal precipitation index (SEPI = (%Pwi +

%Psp)/(%Psu + %Pau))

T ◦C Mean yearly temperature

TEV mm Thornthwaite yearly evapotranspiration

THI ◦C Thermicity Index (THI = 10 (T + m + M))

Tmax ◦C Mean temperature of the warmest month

Tmin ◦C Mean temperature of the coldest month

(Continued)

TABLE 1 | Continued

Name Units Bioclimatic variable description

Tn ◦C Negative temperature; sum of the mean monthly

temperatures of those months whose mean

temperature is lower than 0◦C

Tp ◦C Positive temperature; sum of the mean monthly

temperatures of those months whose mean

temperature is higher than 0◦C

Ts2 ◦C Mean temperature of the two warmest consecutive

months of the year

Tsu ◦C Summer mean temperature (June + July + August)

GDD Degree

day

Growing degree days from Jan 1st to May 31st

minimum temperature, and accumulated precipitation at a
4 × 4 km resolution were aggregated to monthly time scales.
We also extracted downscaled climate projections from 17
global climate models participating in the Fifth Coupled Model
Inter-comparison Project (CMIP5) that have been evaluated
for credibly simulating characteristics of regional climate
(Rupp et al., 2013). Climate projections were downscaled
using the Multivariate Adaptive Constructed Analogs approach
(Abatzoglou and Brown, 2012) using the baseline training
dataset of Abatzoglou (2013) to provide compatibility between
current and future climate data. The 17 GCMs considered in
evaluating predictive model performance were: bcc-csm1-1,
BNU-ESM, CanESM2, CCSM4, CNRM-CM5, CSIRO-Mk3-6-0,
GFDL-ESM2G, GFDL-ESM2M, inmcm4, IPSL-CM5A-LR,
IPSL-CM5A-MR, IPSL-CM5B-LR, MIROC5, MIROC-ESM,
MIROC-ESM-CHEM, MRI-CGCM3, and NorESM1-M. Climate
network common data form (netcdf) layers (4× 4 km resolution)
were brought into ArcGIS and converted to raster layer using
“Make netcdf to raster” tool and then to point dataset using
“raster to point” tool. Conversion to point layer facilitated
generation of latitude and longitude for each point, at the center
of 4× 4 km pixel, thus aiding the extraction of AEC information
for each point in ArcGIS and extraction of present and future
climate netcdfs of precipitation, maximum, and minimum
temperature data in R (R Core Team, 2015).

A total of 44 bioclimatic variables (Table 1) were calculated
using actual historical climate data (1981–2010) for precipitation,
maximum, and minimum temperature. In addition, annual
historical climate data derived from 17 Global climate models
(GCM) for years 1981–2005 (Abatzoglou and Brown, 2012;
Taylor et al., 2012) were used to calculate the same bioclimatic
variables (Table 1). Reducing the data dimensionality from 44 to
a few key variables was accomplished using two different wrapper
variable selection algorithms: VarSelRF (Variable Selection
using Random Forests; Diaz-Uriarte, 2014) and Boruta (Kursa
and Rudnicki, 2010). VarSelRF, a minimal optimal approach,
performs selection by retaining a compact subset of variables
with improved classification performance based on “Out of Bag”
(OOB) error and also allows computation of variable importance
(VarSelRF R package, R Core Team, 2015). Boruta, an all relevant
variable selection approach, identifies all relevant variables, and
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FIGURE 1 | Agro-ecological classes (AECs) for years 2007 through 2014 at 4-km resolution.

models them collectively to examine any underlying mechanisms
in addition to being a predictivemodel (Boruta R package, R Core
Team, 2015).

Observed bioclimatic variables and AECs (Figure 1) were
used as input to R for variable selection using Boruta and
VarSelRF algorithms and the process was repeated 30 times on
split: training (70%) and test (30%) data sets, with different seed
sets for each run. This step is based on the procedure used in
the evaluation process of feature/gene selection (Fortino et al.,
2014; Guo et al., 2014). The goal was to identify the variables
that contributed the most to model performance in the selection
process, which were selected repeatedly during 30 iterations. The
motive behind partitioning the data as training (70%) and test
(30%) was to understand the effect of selecting random subsets
of data (training) on the ranking of variables and, as important
variables were identified, the test set also provided an opportunity
to independently quantify model performance.

Selection algorithms were used with their default parameters.
The Boruta and VarSelRF algorithms facilitated selection of
different sets of variables using performance metrics of z-
score (which only identifies a variable as “important” or
“unimportant”) and accuracy (estimated using OOB error),

respectively. The variables selected by the two methods were
then used to model AECs using Random Forest. The Random
Forest predictive models were built using the “train” function
available in the “caret” package of R and performance statistics
such as overall accuracy and kappa were determined for the
test dataset during 30 iterations by training the model on a
different training set (70%) each time, as well as on the full
dataset with 10-fold five times cross validation. Performance
statistics (overall accuracy and kappa) of predictive models
were also estimated using historical GCM data (1981 through
2005). The Kruskal-Wallis-Test, non-parametric, was conducted
using the “kruskal” function in R (package “agricolae”; de
Mendiburu, 2015) to statistically compare selected Random
Forest models and the selected variables of the final Random
Forest model trained on all six dryland AECs. The performance
of predictive Random Forest models was further evaluated
for each AEC by computing confusion matrix statistics
(accuracy and reliability) for each AEC. The same methods
of variable selection using VarSelRF model training and
evaluation were repeated to produce separate, reduced variable
Random Forest models for each of the three main dryland
AECs. Here, the stable and dynamic subclasses of each
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AEC were combined into one AEC to produce three main
AECs.

Global Climate Models, Prediction of
Future Bioclimatic Variables, and AEC
Shifts
Future climate data were derived from 17 GCMs for time periods
2030 (2015–2045), 2050 (2035–2065), and 2070 (2055–2085) and
for two Representative Concentration Pathway (RCP) scenarios
(RCP-4.5 and RCP-8.5). Downscaled climate data were used
to calculate bioclimatic variables identified as important for
discriminating among current AECs. Using the current spatial
structure of each AEC, spatial average and coefficient of variation
(%) of the identified bioclimatic variables were computed under
present (1981–2010) as well as future time periods and scenarios
(2070 for RCP 4.5 and 8.5).

The selected Random Forest predictive models, trained on
current distributions for all six AECs and separately for each
of the three main AECs, were used to determine changes in
dryland AECs for different climate change time periods and RCP
scenarios. This step was conducted in “R” using the “predict”
function available in the “caret” package (Kuhn, 2015). Here,
future climate scenarios were superimposed on current AEC
production outcomes to assess how climate projections would
impact the current aerial extent and spatial distribution of AECs.
The 17 GCMs resulted in 17 AEC prediction outcomes for each
latitude-longitude which were then consolidated into one value
by selecting the AEC which had been predicted the maximum
number of times.

RESULTS

Modeling AECs
Selection of Bioclimatic Variables and Random

Forest Modeling of Current AECs
The Boruta algorithm selected all 44 bioclimatic variables
as important for Random Forest modeling of AECs and
the resultant model had an overall accuracy using present
meteorological data of 76% (Table 2). In contrast, the
VarSelRF method indicated that three bioclimatic variables,
(Holdridge evapotranspiration index (HBIO), spring (Mar–May)
precipitation (Psp), and precipitation of the warmest 4-months,
Jun–Sep (Pcm1), modeled all six current AECs with an accuracy
of 67% compared to 75% when using all 44 variables (Data not
shown). Cross validation performance statistics of the Random
Forest model using 44 variables had a slight but significantly
greater overall accuracy and kappa for the historical GCM
data compared to the reduced model of the VarSelRF method
(Table 2). Models of the six current AECs using historical GCM
data had an overall accuracy and kappa that were lower than
models using present meteorological data (Table 2).

The performance of reduced predictive Random Forest
models for each of the three major AECs was superior to
the all- and three-variable predictive models for the six AECs
(Table 2). Cross validation performance statistics were greatest
for the GF AEC where the overall accuracy for the Random

Forest model using present data was 93%, followed closely by
AC (91%) and AC-T (89%) (Table 2). In order of importance,
the bioclimatic variables selected by Random Forest modeling
of the AC AEC were (1) Holdridge evapotranspiration index,
(2) autumn precipitation (Sep–Nov) (Pau), and (3) Aridity
Index; for the AC-T AEC, (1) precipitation of the warmest
4-months, Jun–Sep (Pcm1), (2) Holdridge evapotranspiration
index, (3) Aridity Index, and (4) precipitation of the 4-month
season before Pcm1 (Feb–May) (Pcm2); and for the GF AEC,
(1) Holdridge evapotranspiration index, (2) precipitation of the
warmest 4-months, Jun–Sep, and (3) Aridity Index (Table 2). The
performance metrics of the individual three variable predictive
Random Forest models using historical GCM data did not
deviate substantially from those using present meteorological
data (Table 2).

Cross validation accuracy and reliability of Random Forest
modeling for the six AECs were higher using all bioclimatic
variables compared to the three variable Random Forest model
(Table 3). Accuracy of a class is the percent of correctly classified
pixels out of the actual number of pixels, whereas reliability of
a class is the percent of correctly classified pixels out of the
predicted number of pixels. Accuracy and reliability ranged from
48 to 89% and were generally greater for stable than dynamic
AECs for the six AEC models. Irrespective of the Random Forest
model used for all six AECs, predictive accuracy and reliability
were highest for the stable GF class averaging 86% and lowest for
the dynamic AC-T averaging 55% (Table 3). The accuracy and
reliability of the Random Forest models for each of the three
individual AECs were notably greater than that of the six AEC
Random Forest models and averaged 89% for AC, 87% for AC-T,
and 93% for GF (Table 3).

Currently, stable AECs are 59% and dynamic AECs 41% of
the total geographical distribution of dryland cropping systems
(Table 3). The GF AEC currently has the largest area at 42%,
followed by AC-T at 30% and AC at 28%. Spatially, dynamic
AECs occur at the boundary of stable AECs (Figure 1). Here,
non-parametric one-way ANOVA (Krushkal Wallis) showed
significant differences in HBIO, Psp, and Pcm1 among all six
AECs, except stable and dynamic AC-T (Table 4). HBIO means
ranged from a low of 0.89 for dynamic AC-T to a high of 2.13
for stable GF. The stable GF had the lowest and dynamic AC-
T the highest Psp and Pcm1. In addition, bioclimatic variability
(CV) was higher for variables in dynamic compared to stable
AECs (Table 4). Geospatial contours of HBIO, one of the most
useful predictors, and current AECs showed similar patterns with
division between AC and AC-T occurring about where HBIOwas
1, while division between AC-T and GF occurred where HBIO
was 1.5 (Figure 2).

Projected Changes in Bioclimatic Variables and

Modeled Shifts in Current AECs
Increases in HBIO are projected under RCP 4.5 and 8.5
by 2070 (Table 4, Figure 2). Projected increases in Psp
and declines in Pcm1 are anticipated across the iPNW.
Both HBIO and ARI (different methods of calculating
evapotranspiration and then dividing by precipitation) are
predicted to increase and were selected as important for

Frontiers in Ecology and Evolution | www.frontiersin.org 5 July 2017 | Volume 5 | Article 74

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Kaur et al. Agro-Ecological Class Response to Climate Change

TABLE 2 | Bioclimatic variables selected by Random Forest (RF) modeling of six and three agro-ecological classes (AECs).

Variable selection

algorithm

Variables† (variable importance) AECs‡ Present§ overall

accuracy (%)

Present

kappa

Historical¶ GCM overall

accuracy (%)

Historical

GCM

kappa

Models for all six stable and dynamic AECs

Boruta All 44 variables All 76 0.70 69a* 0.62a*

VarselRF HBIO (99.2) + Psp (92.2) + Pcm1 (76.6) All 69 0.62 64b 0.56b

RF models for each of the three major AECs

VarselRF HBIO (84.7) + Pau (43.9) + ARI (33.1) AC 91 0.79 90 0.75

Pcm1 (47.8) + HBIO (41.6) + ARI (35.1) + Pcm2 (34.0) AC-T 89 0.74 86 0.67

HBIO (55.4) + Pcm1 (36.6) + ARI (26.6) GF 93 0.86 91 0.83

*Numbers in columns with different letters are statistically different at p <0.05 level of significance using non parametric one-way ANOVA (Krushkal Wallis) test.
†
HBIO, Holdridge evapotranspiration index (unitless); Psp= spring precipitation (March-May), mm; Pcm1= precipitation of the warmest four-month season in the year (June-September),

mm; Pau = autumn precipitation (September-November), mm; ARI = Aridity index (unitless); Pcm2 = precipitation of the four-month season before Pcm1 (February-May), mm.
‡All = six stable and dynamic AECs; AC, stable and dynamic annual crop AECs; AC-T, stable and dynamic annual crop-fallow transition AECs; GF, stable and dynamic grain-fallow

AECs.
§Meteorological data from 1981 to 2010.
¶Meteorological simulations generated by 17 GCMs (Global Climate Models) from 1981 to 2005.

TABLE 3 | Agro-ecological classes (AECs) in present time period and cross

validation accuracy and reliability of full and reduced variable Random Forest (RF)

models for six and three AECs.

Annual

crop

Annual

crop-fallow-

transition

Grain fallow

Current AECs

(number of 4 x 4

km pixels)

Stable 276 271 455

Dynamic 205 235 262

Full (44 variable) RF model for six AECs

Accuracy† (%) Stable 78 75 84

Dynamic 78 62 66

Reliability‡ (%) Stable 86 77 89

Dynamic 68 57 62

Reduced (three variable) RF model for six AECs

Accuracy (%) Stable 76 69 88

Dynamic 59 48 55

Reliability (%) Stable 68 66 84

Dynamic 69 54 59

Reduced (three or four variables) RF models for each

of the three major AECs

Actual classified

pixels (number)

Presence 481 506 717

Absence 1223 1198 987

Accuracy (%) Presence 85 80 91

Absence 94 93 95

Reliability (%) Presence 85 82 92

Absence 94 92 94

†
Accuracy of a class is defined as the percent of correctly classified pixels of that class

out of its total actual/true number of pixels.
‡Reliability of a class is defined as the percent of correctly classified pixels of that class

out of its total pixels in the predicted classification.

individual Random Forest modeling of the three major AECs,
although HBIO showed greater predicted responses to climate
change than ARI (Table 4). Increases in seasonal precipitation
were predicted for AC and AC-T; Pcm2 increases were
particularly important in AC-T, while Pau increased modestly
for AC. In contrast, decreased Pcm1 was predicted for GF
(Table 4).

A 46% decrease in area for dynamic AC and stable AC-
T occurs if future climate scenarios of RCP 8.5 were imposed
upon current production systems using the six AEC model
(Table 5). Areas of stable AC and GF would decline more
modestly (8 and 13%, respectively). In contrast, area would
increase by 58 and 63%, respectively, for dynamic AC-T and
GF. These results are depicted spatially in Figure 3 for 2070,
RCP 8.5, and in comparison with present AECs (Figure 1), show
dynamic AC-T and GF replacing dynamic AC and stable AC-
T, GF, and AC. Coefficients of variation (CVs) of projected
areas tended to be higher for dynamic compared to stable AECs
and, with a few exceptions (stable AC-T, under RCP 4.5 and
8.5), generally increased as the twenty-first century progressed
(Table 5).

In general, predictions for the main three AECs followed
the same trends as the six AEC models, with the area under
AC declining by 17%, AC-T increasing modestly (2%), and

with more substantial area increases predicted for GF (15%)

across all time periods of RCP 8.5 (Table 5). Here, CVs were

generally lower under all future climate scenarios than for

the six AEC models and did not have a strong tendency to

increase with time. Spatial representations of the three main AEC

Random Forest models for present day and a future scenario
(2070 and RCP 8.5) generally indicate future areas under AC-
T encroaching on present day AC while GF replaces AC-T
(Figure 4).
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TABLE 4 | Spatial average and coefficient of variation (CV%) of bioclimatic variables used with Random Forest (RF) models for present time period (1981–2010) and their

future (2070) predictions under two representative concentration pathway (RCP- 4.5 and 8.5) scenarios derived from 17 global climate models.

Variables† (Units) RCP‡ Time period Annual crop Annual crop-fallow-transition Grain fallow

Stable (CV%) Dynamic (CV%) Stable (CV%) Dynamic (CV%) Stable (CV%) Dynamic (CV%)

RF modeling of all six AECs

HBIO (unitless) n.a.§ Present 0.95d* (19) 0.89e (27) 1.28c (14) 1.31c (22) 2.13a (17) 1.86b (22)

4.5 2070 1.16 (17) 1.10 (25) 1.53 (13) 1.57 (20) 2.48 (16) 2.19 (21)

8.5 2070 1.25 (17) 1.20 (23) 1.64 (12) 1.68 (19) 2.61 (15) 2.30 (21)

Psp (mm) n.a. Present 162b (16) 176a (17) 126c (20) 133c (26) 74e (19) 100d (26)

4.5 2070 175 (16) 191 (18) 136 (19) 143 (27) 79 (19) 105 (26)

8.5 2070 183 (16) 199 (18) 142 (19) 149 (27) 82 (19) 110 (26)

Pcm1 (mm) n.a. Present 104b (15) 124a (19) 81c (22) 87c (39) 48e (17) 59d (25)

4.5 2070 100 (15) 120 (19) 78 (22) 83 (39) 46 (18) 56 (25)

8.5 2070 102 (14) 122 (19) 80 (22) 85 (38) 47 (18) 57 (26)

Presence (CV%) Absence (CV%) Presence (CV%) Absence (CV%) Presence (CV%) Absence (CV%)

RF modeling of each of the three major AECs

HBIO (unitless) n.a. Present 0.93 (22) 1.73 (29) 1.30 (18) 1.59 (40) 2.03 (20) 1.12 (26)

4.5 2070 1.13 (21) 2.03 (27) 1.55 (17) 1.88 (38) 2.38 (19) 1.35 (24)

8.5 2070 1.23 (20) 2.15 (26) 1.65 (16) 1.99 (37) 2.50 (18) 1.45 (23)

ARI (unitless) n.a. Present 1.08 (19) 1.90 (27) 1.45 (16) 1.76 (37) 2.21 (19) 1.27 (23)

4.5 2070 1.17 (19) 2.05 (27) 1.57 (16) 1.90 (37) 2.39 (18) 1.38 (22)

8.5 2070 1.22 (19) 2.13 (27) 1.64 (16) 1.98 (37) 2.48 (18) 1.44 (22)

Pcm1 (mm) n.a. Present n.a. n.a. 84 (32) 76 (45) 52 (24) 98 (29)

4.5 2070 n.a. n.a. 81 (32) 73 (45) 50 (24) 94 (29)

8.5 2070 n.a. n.a. 82 (31) 75 (45) 51 (24) 96 (28)

Pcm2 (mm) n.a. Present n.a. n.a. 166 (20) 152 (40) n.a. n.a.

4.5 2070 n.a. n.a. 182 (20) 168 (40) n.a. n.a.

8.5 2070 n.a. n.a. 190 (20) 175 (40) n.a. n.a.

Pau (mm) n.a. Present 142 (18) 90 (25) 109 (15) 102 (37) n.a. n.a.

4.5 2070 146 (17) 95 (24) 114 (13) 107 (35) n.a. n.a.

8.5 2070 147 (17) 98 (22) 117 (13) 109 (34) n.a. n.a.

*Numbers with different letters are statistically different at p<0.05 level of significance using non parametric one-way ANOVA (Krushkal Wallis) test.
†
HBIO, Holdridge evapotranspiration index, unitless; Psp = spring precipitation (March-May), mm; Pcm1, Precipitation of the warmest four months (Jun-Sept), mm; ARI, Aridity index,

unitless; Pcm2, Precipitation of the four months before Pcm1 (Feb-May), mm; Pau, Autumn precipitation (Sept-Nov), mm.
‡RCP, Representative concentration pathway.
§n.a., Not applicable.

DISCUSSION

Identification of Bioclimatic Predictors
Useful for Discriminating among Current
AECs
Our study emphasizes the use of bioclimatic variables as they
contribute to the geographic distributions of species and are used
in modeling species occurrence (Watling et al., 2012). The HBIO
was identified as an important bioclimatic variable for AEC
modeling and prediction of all six dryland AECs as well as each
of the three main AECs. Computationally, HBIO is an annual
average of monthly temperatures within a range of 0–30◦C,
which is multiplied by a constant (58.93; Holdridge, 1967) to give
Holdridge evapotranspiration (ET) and then divided by annual
precipitation. HBIO, an important variable in the Holdridge
life zone classification, is defined as potential evapotranspiration

ratio and as mentioned, is dependent on annual precipitation and
annual bio-temperature, the other two important variables used
in the classification. The Holdridge life zone classification model
represents the relation between climate and vegetation pattern
and has been used in climate change studies to investigate the
impact of changing climate on species distributions in different
ecosystems (Cameron and Scheel, 2001; Enquist, 2002). Values of
HBIO < 1 indicates conditions of water sufficiency while HBIO
> 1 suggests conditions of water insufficiency or deficiency for
all plant and animal life forms (Savage, 2002). In the present
study, the average HBIO of stable and dynamic AC AECs were
<1, while the remaining AECs, which all rely on fallow, had
an HBIO > 1 (Table 4). Thus, empirically, HBIO emerged as
an important bioclimatic variable for driving future changes
in the extent and spatial distribution of AECs (Figures 1–3).
Similarly, when considering 44 bioclimatic variables for each
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FIGURE 2 | Geo-spatial depiction of current Agro-ecological classes (AECs) and Holdridge Evapotranspiration index (HBIO) in present (1981–2010) and future climate

scenario (2070, Representative Concentration Pathway, RCP-8.5).

of the three major AECs, ET indices, namely HBIO, and ARI
(Thornthwaite ET index; defined as ratio of Thornthwaite ET
to annual precipitation), were identified as the most important
driving variables for AEC modeling.

Our analyses do not consider potential beneficial effects of
rising carbon dioxide (CO2) levels on crop physiology including
increases in water-use efficiency (WUE) and overall crop yield
(Stöckle et al., 2010). Ramírez and Finnerty (1996) reported
decreased potential evapotranspiration (PET) under elevated
CO2 conditions and a resultant increase in WUE. Therefore,
HBIO, although a bio-temperature based estimate of PET, could
decrease with greater levels of atmospheric CO2, potentially
compensating for increased HBIO resulting from warming.
Significant increases in soil water availability (via reduced
stomatal conductance) under elevated CO2 levels (Lu et al.,
2016) could also compensate for negative impacts reported here,
particularly the use of annual fallow. Palmquist et al. (2016),
however, projected increases in actual evapotranspiration, dry
days, and large reductions in available soil water during summer
due to climate change for the western U.S. including our
study region. Here, potential ameliorating effects of elevated

CO2 levels were not considered. Nonetheless, offsets of positive
influences of elevated CO2 levels due to negative effects of
increased temperatures on crop physiology and growth have
also been reported (Reddy et al., 2002; Zavaleta et al., 2003).
Ko et al. (2012) simulated that negative effects of increased
temperature would dominate the positive effects of rising CO2

levels on crop yields in dryland cereal-based rotations of the U.S.
Central Great Plains. Consequently, a thorough understanding
of positive and negative feedback mechanisms from climate-
vegetation interactions including CO2 levels remains elusive.

Previous studies have used annual precipitation as an
important delineator to classify dryland cropping systems of
the iPNW (Douglas et al., 1988, 1992). In the present study,
however, spring precipitation (Psp) and precipitation during the
warmest 4 months (Pcm1) were identified as more important
empirical predictors of AECs than annual precipitation. From
a crop production and soil water storage perspective, most of
the annual precipitation occurs from November to May and
is important for all dryland AECs of the iPNW (Schillinger
et al., 2008). Also relevant, however, are quantities of spring
and early summer rainfall (April–Jun) which coincide with
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TABLE 5 | Agro-ecological class (AEC) (number of 4 × 4 km pixels) for present time period and predicted number, average and coefficient of variation (CV%), under three

future time periods and two representative concentration pathway (RCP-4.5 and 8.5) scenarios derived from 17 global climate models using Random Forest (RF) models

for six and three AECs.

Time period Annual crop Annual crop-fallow-transition Grain fallow

Stable (CV%) Dynamic (CV%) Stable (CV%) Dynamic (CV%) Stable (CV%) Dynamic (CV%)

RF model for six AECs

Present 276 205 271 235 455 262

RCP-4.5

2030 258 (23) 138 (38) 213 (25) 298 (50) 466 (11) 331 (43)

2050 259 (28) 116 (49) 164 (38) 344 (48) 443 (19) 377 (42)

2070 272 (18) 108 (54) 138 (41) 382 (40) 393 (28) 412 (47)

RCP-8.5

2030 230 (35) 141 (51) 182 (32) 328 (46) 467 (18) 356 (48)

2050 269 (22) 101 (60) 141 (45) 363 (48) 388 (28) 443 (46)

2070 264 (22) 92 (70) 118 (49) 423 (49) 328 (32) 480 (52)

Presence (CV%) Absence (CV%) Presence (CV%) Absence (CV%) Presence (CV%) Absence (CV%)

Separate RF models for each of the three major AECs

Present 481 1223 506 1198 717 987

RCP-4.5

2030 436 (20) 1268 (7) 495 (21) 1209 (9) 799 (16) 905 (14)

2050 439 (20) 1265 (7) 488 (20) 1216 (8) 816 (16) 888 (15)

2070 420 (21) 1284 (7) 502 (19) 1202 (8) 805 (18) 899 (16)

RCP-8.5

2030 392 (18) 1312 (6) 494 (22) 1210 (9) 800 (19) 904 (17)

2050 386 (31) 1318 (9) 497 (23) 1207 (9) 842 (19) 862 (18)

2070 415 (32) 1289 (10) 557 (26) 1147 (12) 832 (26) 872 (24)

anthesis and grain filling of winter and spring crops (Schillinger
et al., 2008). Our study indicates that seasonal precipitation
and temperature significantly contributed toward differentiating
among AECs. These results have production relevance as
decisions regarding spring flex-cropping options (whether to
produce a spring crop or to fallow) would be based on
winter precipitation rather than spring and summer rainfall.
Consequently, more uncertainty would be associated with flex-
cropping options, potentially promoting the use of annual
fallow.

Predictive Capacity of AEC Models
There are numerous empirical approaches available to
understand species distributions and analyze climate-species
relations. In the present study, we used “Random Forest,”
reported as a higher performance algorithm than other empirical
approaches (Cutler et al., 2007; Schrag et al., 2008). Watling
et al. (2012) did not report significant differences in prediction
results using Random Forest with two different sets of variables
(bioclimatic and monthly variables). Similarly, with our dataset,
using Random Forest to predict current AECs resulted in
comparable overall accuracy and kappa with cross validation on
different sets of selected variables using two different variable
selection methods. Elsewhere, the Random Forest approach has
been successfully applied in various fields of research ranging

from micro-array data analysis (Díaz-Uriarte and Alvarez de
Andrés, 2006), hyper-spectral data analysis (Adam et al., 2012;
Poona and Ismail, 2014), current species distribution studies,
as well as in predicting distributions with changing future
climate (Schrag et al., 2008; Watling et al., 2012; Langdon
and Lawler, 2015). Random Forest belongs to the algorithmic
modeling culture (Breiman, 2001) in statistical modeling where
the data mechanisms are complex and not known. Therefore,
Random Forest modeling results can be difficult to interpret
and to identify underlying causal mechanisms. Nonetheless,
Random Forest is gaining popularity over other empirical
approaches for the following reasons: (1) it is non-parametric
in nature and does not assume data distribution; (2) it is an
ensemble classifier, its results are aggregated over the number
of classification trees built/defined in the algorithm, and it
avoids overfitting; and (3) the Random Forest algorithm is
computationally more efficient and deals well with correlation
and high-order interactions between input variables. For many
datasets, utilizing Random Forest has proved to be highly
accurate compared to other classifiers (Fernández-Delgado et al.,
2014).

Performance of Random Forest as a predictive model
was comparable with present meteorological as well as GCM
data even with the reduction from 44 to 3 variables, which
corroborated the high performance of the Random Forest
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FIGURE 3 | Projected geo-spatial distribution of six (stable and dynamic) agro-ecological classes (AECs) using combined Random Forest (RF) model of bioclimatic

variables for six AECs under future climate scenario (2070, Representative Concentration Pathway, RCP-8.5).

algorithm (Table 2). The only limitation of using the reduced
Random Forest model with three variables was that this might
decrease the possible combinations which would otherwise
be used by Random Forest to improve AEC classification
accuracy. In predictive modeling, however, a less complex and
parsimonious model that uses a few important and relevant
variables with high explanatory power is easier to interpret than
a model with many variables as long as overall accuracy is not
too impaired and the less complex model is also able to capture
the intricacies of the patterns and distributions modeled (Evans
et al., 2011). In our research, the 44 (all variables) Random Forest
model had greater accuracy and reliability than the three variable
model, but there was little loss in performance by reducing
the number of variables from 44 to 3 (Table 2). Therefore, we
proceeded with the VarSelRF selection method to reduce model
dimensionality as well as redundancy to facilitate interpretation
(Murphy et al., 2010) for all subsequent Random Forest modeling
of AECs, and also to avoid model overfitting, which occurs in
complex models with increased model variance (Hastie et al.,
2009; Table 3).

The range in accuracy and reliability for the three variable
Random Forest model was much greater for stable than dynamic

AECs (Table 3) indicating more uncertainty would occur in
prediction of dynamic AECs when imposing future predicted
changes in bioclimatic drivers. Contributing to the uncertainty
of dynamic AEC prediction was the scattered spatial distribution
(e.g., Thuiller et al., 2003) of dynamic AECs compared to the
more compact distribution of stable AECs (Figures 1, 4). In
turn, this contributed to higher CVs of selected bioclimatic
variables within dynamic compared to stable AECs (Table 4).
The relatively poor Random Forest model performance of the
dynamic AECs led to modeling each of the three major AECs
where stable and dynamic AECs were combined. Here, Random
Forest modeling of the three major AECs separately improved
overall Random Forest model accuracy from 69% to up to
more than 93% (Table 2) and further identified the difficulty
in using only bioclimatic variables in one Random Forest
model to differentiate between stable and dynamic subclasses
of major AECs. Thus, modeling three major AECs separately
highlighted the role of bioclimatic variables and identified
the need to include additional variables (e.g., soil, seasonal
weather, and economic) if greater AEC model accuracy is
required. The overall high accuracy (89–93%) of Random Forest
modeling of the major AECs using only a few (3–4) bioclimatic
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FIGURE 4 | Projected geo-spatial distribution of three agro-ecological classes (AECs) using three individual Random Forest (RF) models of bioclimatic variables under

future climate scenario (2070, Representative Concentration Pathway, RCP-8.5).

variables was surprising as other socio-economic and biophysical
factors contribute to current AEC outcomes (Figures 1, 4). It

is important to recognize that the current AECs are derived

from the Cropland datalayer (USDA-NASS, 2008–2015) and

represents the land use/cover derived from the integration of

biophysical and socio-economic factors. Our results, however,
emphasize the fundamental importance of climatic variables in
driving AEC outcomes and the potential for climate change to
shape future AECs.

Regional Shifts in Current AECs under
Future Climate Scenarios
It is important to recognize that our analyses simply impose
future projections of relevant bioclimatic variables in modeling
geo-spatial shifts of AECs under current production factors,
including existing levels of atmospheric CO2. The modeled
changes in AECs indicate that cropping systems would be
less stable and employ more annual fallow, thereby decreasing
cropping system intensification. Currently, the GF AEC is the
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least flexible and diverse cropping system with few economic
options with respect to crop choice, consisting primarily of
winter wheat followed by annual fallow in short, 2-year rotations.
Consequently, the GF AEC is the most vulnerable to extremes in
weather or variations in markets, farm input costs, government
policies and other sources of uncertainty. In contrast, the
AC AEC has the most crop diversity and is relatively less
vulnerable to future uncertainties, although improvements would
be beneficial (Huggins et al., 2015).

Collectively, these results suggest a reduction in cropping
intensity, potentially reduced yields (more fallow) and diversity,
and increased area where cropping systems are less stable under
climate change. These conclusions contrast sharply with results
reported for the same region using process-oriented cropping
system modeling that includes increasing future levels of CO2

(Karimi et al., 2017; Stöckle et al., 2017). Here, crop yields are
simulated to increase under the same climate change scenarios
presented here with the conclusion that there will be less
annual fallow. Challenges of biophysical modeling of cropping
systems, however, include determining what factors determine
the geospatial extent and location of a given cropping system.
This challenge becomes more acute if cropping systems are
projected to become more dynamic as in our study. Many
factors other than crop yield, such as social-economic, yield
stability and risk, disease, weed and pest pressure, are not fully
integrated into crop models to determine the cropping system
that would be used by producers. Here, projected yield increases
may not necessarily result in less fallow and could actually
be associated with more fallow to aid the stability of higher
yields. Furthermore, if higher yields are associated with more
area under annual fallow, then the overall crop yields of the
region could decline. Our analyses use the cropping systems
derived from the Cropland data-layer (USDA-NASS, 2008–2015)
which are geo-spatial outcomes of producer decisions resulting
from the integration of all contributing bio-physical and socio-
economic factors.We contend, therefore, that future research will
need to explore and develop production systems that promote
intensification and diversification in the face of adverse climate
change.

Relevance of AEC Shifts for Sustainable
Agriculture
Processes affecting soil resources in dryland cropping systems
of the iPNW include soil erosion through the action of wind,
water, and tillage (McCool et al., 1998; Saxton et al., 2000;
Sharratt et al., 2012), declining levels of soil organicmatter (SOM;
Rasmussen et al., 1989; Purakayastha et al., 2008), increasing
soil acidification (Mahler et al., 1985; Brown et al., 2008),
and decreasing soil biological activity and diversity (Elliott and
Lynch, 1994). Currently, these degradation processes threaten the
sustainability of the region’s dryland cropping systems (McCool
et al., 2001). Winter wheat following annual fallow combined
with conventional tillage that leaves little protective surface crop
or residue cover is particularly prone to soil erosion. Potential
increases in HBIO and shifts toward more annual fallow due
to climate change (Table 5) could increase the regional hazard

of soil erosion. This could occur despite potential off-setting
factors, such as increased crop biomass production due to CO2

fertilization effects (Sharratt et al., 2015). Annual soil losses due
to soil erosion by wind and water currently range from 1 to
50Mg ha−1 (Nagle and Ritchie, 2004; Kok et al., 2008; Sharratt
et al., 2012). Rates of soil erosion below established USDA annual
soil loss tolerance limits of 2.2–11.2Mg ha−1 (Renard et al.,
1997) are likely required to meet agricultural sustainability goals
(Montgomery, 2007) and could be achieved with continuous no-
tillage under annual or perennial cropping systems that limit
annual fallow (Huggins and Reganold, 2008; Huggins et al.,
2014a).

Negative impacts of annual fallow on SOM, primarily
due to decreased crop inputs, factors enhancing biological
decomposition (e.g., tillage, water, and temperature), and
increased vulnerability to soil erosion, are well-documented
(Campbell et al., 1999; Liebig et al., 2006; Gan et al., 2012).
Declining SOM associated with increasing regional climate ratios
as projected by future climate change in the iPNW (Morrow
et al., 2017) would further promote soil degradation processes
by negatively impacting aggregate stability and microbial
communities and their functions (Allen et al., 2011; Maestre
et al., 2015). Annual fallow has been reported to adversely
influence microbial biomass and activity (Steenwerth et al.,
2002; Pankhurst et al., 2005) as well as obligatory symbiotic
organisms such as arbuscular mycorrhizal fungi (Thompson,
1987; Pankhurst et al., 2005). The primary objective of annual
fallow is to stabilize crop yields under conditions of low or widely
varying precipitation (Greb et al., 1974). Annual fallow has been
widely practiced across agricultural areas of the western United
States and Prairie Provinces of Canada (Nielson and Calderon,
2011). In the iPNW, 2-year winter wheat–annual fallow rotations
have dominated low annual precipitation areas with dryland
cropping since the 1890s as this rotation is less risky and
more profitable (Schillinger et al., 2006). Therefore, overcoming
projected increases in annual fallow that would further threaten
the regions agricultural sustainability under climate change will
likely require diverse strategies that engage socio-economic as
well as biophysical dimensions (Peterson et al., 1996; Pan et al.,
2016; Maaz et al., in press).

Agricultural strategies to reduce or eliminate annual fallow
and its adverse effects include: (1) conservation tillage practices;
(2) intensification and diversification of cropping systems; (3)
elimination of crop residue removal via residue burning or
harvest; (4) use of soil amendments such as manures and bio-
solids; and (5) policies that enhance the short-term economics
of alternative crops and fallow replacement. Precipitation-use
efficiency, under cropping systems with annual fallow, ranges
from 10 to 40% (Peterson et al., 1996; Farahani et al., 1998).
Reviewing the literature, Hatfield et al. (2001) concluded that
increases in WUE of 25–40% could be achieved through
conservation tillage and cropping system intensification in
semiarid environments. Peterson et al. (1996), however, stated
that despite improvements in WUE or environmental factors,
adoption of intensified cropping systems depended more on
favorable economic outcomes and government programs. In
the iPNW, various alternative crop and opportunity (flex)

Frontiers in Ecology and Evolution | www.frontiersin.org 12 July 2017 | Volume 5 | Article 74

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Kaur et al. Agro-Ecological Class Response to Climate Change

crop options have been explored such as canola (Pan et al.,
2016; Maaz et al., in press), facultative wheat (Bewick et al.,
2008), and fallow replacement with no-till spring wheat (Thorne
et al., 2003). Maaz et al. (in press) concluded, however, given
the economic competitiveness of wheat in the iPNW, that
(1) economic approaches should be broadened to allow crop
rotational rather than single commodity assessments; (2) crop
insurance policies should consider more support of whole farm
risk management options; and (3) additional multi-commodity
groups with an interest in market-driven crop diversification
should be established.

CONCLUSIONS

Bioclimatic variables were useful for discriminating among
iPNW AECs using Random Forest models. In particular,
potential evapotranspiration based indices proved to be
more relevant predictors of present iPNW AECs than annual
precipitation which is commonly used to describe agricultural
zones. Super-imposing future climate scenarios onto current
agricultural production systems resulted in significant geospatial
shifts in AECs. Dynamic and fallow-based AECs increased in
area while stable AECs and annual cropping AECs decreased.
Increasing annual fallow is counter to cropping system
objectives of increasing intensification, diversification, and
productivity. Furthermore, more annual fallow would aggravate
soil degradation processes by increasing vulnerability to soil
erosion and adversely impacting soil organic matter and
biological activity. Our model results do not integrate important
future influences including technological and scientific advances,
changing agricultural markets, and economies and rising
atmospheric CO2 levels. Integrative, transdisciplinary research
that includes genetic, environmental, management, and

social-economic dimensions will be required if sustainable
agricultural systems are to be developed to address future
uncertainties including climate change.
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