4,723 research outputs found

    Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector

    Get PDF
    Mesenchymal stromal cells (MSCs) hold great promise for regenerative medicine. Stable ex vivo gene transfer to MSCs could improve the outcome and scope of MSC therapy, but current vectors require multiple rounds of transduction, involve genotoxic viral promoters and/or the addition of cytotoxic cationic polymers in order to achieve efficient transduction. We describe a self-inactivating foamy virus vector (FVV), incorporating the simian macaque foamy virus envelope and using physiological promoters, which efficiently transduces murine MSCs (mMSCs) in a single-round. High and sustained expression of the transgene, whether GFP or the lysosomal enzyme, arylsulphatase A (ARSA), was achieved. Defining MSC characteristics (surface marker expression and differentiation potential), as well as long-term engraftment and distribution in the murine brain following intracerebroventricular delivery, are unaffected by FVV transduction. Similarly, greater than 95% of human MSCs (hMSCs) were stably transduced using the same vector, facilitating human application. This work describes the best stable gene transfer vector available for mMSCs and hMSCs

    4-H Dairy Calf Club

    Get PDF
    March, 1929.Cover title

    4-H Bred Heifer Dairy Club

    Get PDF
    March, 1929.Cover title

    4-H Dairy Cow Club

    Get PDF
    March, 1929.Cover title

    Improved definition of crustal magnetic anomalies for MAGSAT data

    Get PDF
    The routine correction of MAGSAT vector magnetometer data for external field effects such as the ring current and the daily variation by filtering long wavelength harmonics from the data is described. Separation of fields due to low altitude sources from those caused by high altitude sources is affected by means of dual harmonic expansions in the solution of Dirichlet's problem. This regression/harmonic filter procedure is applied on an orbit by orbit basis, and initial tests on MAGSAT data from orbit 1176 show reduction in external field residuals by 24.33 nT RMS in the horizontal component, and 10.95 nT RMS in the radial component

    Inner Molecular Rings in Barred Galaxies: BIMA SONG CO Observations

    Full text link
    Although inner star-forming rings are common in optical images of barred spiral galaxies, observational evidence for the accompanying molecular gas has been scarce. In this paper we present images of molecular inner rings, traced using the CO (1-0) emission line, from the Berkeley-Illinois-Maryland-Association Survey of Nearby Galaxies (BIMA SONG). We detect inner ring CO emission from all five SONG barred galaxies classified as inner ring (type (r)). We also examine the seven SONG barred galaxies classified as inner spiral (type (s)); in one of these, NGC 3627, we find morphological and kinematic evidence for a molecular inner ring. Inner ring galaxies have been classified as such based on optical images, which emphasize recent star formation. We consider the possibility that there may exist inner rings in which star formation efficiency is not enhanced. However, we find that in NGC 3627 the inner ring star formation efficiency is enhanced relative to most other regions in that galaxy. We note that the SONG (r) galaxies have a paucity of CO and H alpha emission interior to the inner ring (except near the nucleus), while NGC 3627 has relatively bright bar CO and H alpha emission; we suggest that galaxies with inner rings such as NGC 3627 may be misclassified if there are significant amounts of gas and star formation in the bar.Comment: To be published in the Astrophysical Journal, July 2002 A version of the paper with full resolution figures is available at: http://www.astro.umd.edu/~mregan/ms.ps.g

    The Mass Inflow Rate in the Barred Galaxy NGC 1530

    Get PDF
    Mass inflow in barred galaxies has been invoked to account for a wide variety of phenomena, but until now direct evidence for inflow has been lacking. We present Fabry-Perot H-alpha observations of the barred spiral galaxy NGC 1530 from which we determine velocities of the ionized gas for the entire region swept by the bar. We compare the velocity field to models of gas flow in barred spirals and show that it is well reproduced by ideal gas hydrodynamic models. Inspection of the models and observations reveals that gas entering the bar dust lanes streams directly down the dust lanes toward the 2 kpc radius nuclear ring. The models predict that approximately 20% of the gas flowing down the dust lane enters the nuclear ring; the remaining gas sprays around the ring to the other bar dust lane. The fraction of the gas entering the ring is relatively insensitive to the shape or size of the bar. Our observations of the velocity field and dust optical depth yield a mass inflow rate into the nuclear ring of 1 solar mass per year.Comment: 13 pages, 3 figures, aastex 4.0, accepted for publication in Ap J Letter

    Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-ray Studies on Liquid Indium

    Full text link
    We report x-ray reflectivity (XR) and small angle off-specular diffuse scattering (DS) measurements from the surface of liquid Indium close to its melting point of 156156^\circC. From the XR measurements we extract the surface structure factor convolved with fluctuations in the height of the liquid surface. We present a model to describe DS that takes into account the surface structure factor, thermally excited capillary waves and the experimental resolution. The experimentally determined DS follows this model with no adjustable parameters, allowing the surface structure factor to be deconvolved from the thermally excited height fluctuations. The resulting local electron density profile displays exponentially decaying surface induced layering similar to that previously reported for Ga and Hg. We compare the details of the local electron density profiles of liquid In, which is a nearly free electron metal, and liquid Ga, which is considerably more covalent and shows directional bonding in the melt. The oscillatory density profiles have comparable amplitudes in both metals, but surface layering decays over a length scale of 3.5±0.63.5\pm 0.6 \AA for In and 5.5±0.45.5\pm 0.4 \AA for Ga. Upon controlled exposure to oxygen, no oxide monolayer is formed on the liquid In surface, unlike the passivating film formed on liquid Gallium.Comment: 9 pages, 5 figures; submitted to Phys. Rev.

    Multiply Folded Graphene

    Get PDF
    The folding of paper, hide, and woven fabric has been used for millennia to achieve enhanced articulation, curvature, and visual appeal for intrinsically flat, two-dimensional materials. For graphene, an ideal two-dimensional material, folding may transform it to complex shapes with new and distinct properties. Here, we present experimental results that folded structures in graphene, termed grafold, exist, and their formations can be controlled by introducing anisotropic surface curvature during graphene synthesis or transfer processes. Using pseudopotential-density functional theory calculations, we also show that double folding modifies the electronic band structure of graphene. Furthermore, we demonstrate the intercalation of C60 into the grafolds. Intercalation or functionalization of the chemically reactive folds further expands grafold's mechanical, chemical, optical, and electronic diversity.Comment: 29 pages, 10 figures (accepted in Phys. Rev. B

    Coexistence and critical behaviour in a lattice model of competing species

    Get PDF
    In the present paper we study a lattice model of two species competing for the same resources. Monte Carlo simulations for d=1, 2, and 3 show that when resources are easily available both species coexist. However, when the supply of resources is on an intermediate level, the species with slower metabolism becomes extinct. On the other hand, when resources are scarce it is the species with faster metabolism that becomes extinct. The range of coexistence of the two species increases with dimension. We suggest that our model might describe some aspects of the competition between normal and tumor cells. With such an interpretation, examples of tumor remission, recurrence and of different morphologies are presented. In the d=1 and d=2 models, we analyse the nature of phase transitions: they are either discontinuous or belong to the directed-percolation universality class, and in some cases they have an active subcritical phase. In the d=2 case, one of the transitions seems to be characterized by critical exponents different than directed-percolation ones, but this transition could be also weakly discontinuous. In the d=3 version, Monte Carlo simulations are in a good agreement with the solution of the mean-field approximation. This approximation predicts that oscillatory behaviour occurs in the present model, but only for d>2. For d>=2, a steady state depends on the initial configuration in some cases.Comment: 11 pages, 14 figure
    corecore