58 research outputs found

    Imbalance of local bone metabolism in inflammatory arthritis and its reversal upon tumor necrosis factor blockade: direct analysis of bone turnover in murine arthritis

    Get PDF
    Chronic arthritis typically leads to loss of periarticular bone, which results from an imbalance between bone formation and bone resorption. Recent research has focused on the role of osteoclastogenesis and bone resorption in arthritis. Bone resorption cannot be observed isolated, however, since it is closely linked to bone formation and altered bone formation may also affect inflammatory bone loss. To simultaneously assess bone resorption and bone formation in inflammatory arthritis, we developed a histological technique that allows visualization of osteoblast function by in-situ hybridization for osteocalcin and osteoclast function by histochemistry for tartrate-resistant acid phosphatase. Paw sections from human tumor necrosis factor transgenic mice, which develop an erosive arthritis, were analyzed at three different skeletal sites: subchondral bone erosions, adjacent cortical bone channels, and endosteal regions distant from bone erosions. In subchondral bone erosions, osteoclasts were far more common than osteoblasts. In contrast, cortical bone channels underneath subchondral bone erosions showed an accumulation of osteoclasts but also of functional osteoblasts resembling a status of high bone turnover. In contrast, more distant skeletal sites showed only very low bone turnover with few scattered osteoclasts and osteoblasts. Within subchondral bone erosions, osteoclasts populated the subchondral as well as the inner wall, whereas osteoblasts were almost exclusively found along the cortical surface. Blockade of tumor necrosis factor reversed the negative balance of bone turnover, leading to a reduction of osteoclast numbers and enhanced osteoblast numbers, whereas the blockade of osteoclastogenesis by osteoprotegerin also abrogated the osteoblastic response. These data indicate that bone resorption dominates at skeletal sites close to synovial inflammatory tissue, whereas bone formation is induced at more distant sites attempting to counter-regulate bone resorption

    Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease

    Get PDF
    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications

    JNK1 is not essential for TNF-mediated joint disease

    Get PDF
    Tumour necrosis factor (TNF) signalling molecules are considered as promising therapeutic targets of antirheumatic therapy. Among them, mitogen-activated protein kinases are thought to be of central importance. Herein, we investigate the role in vivo of TNF-α signalling through c-Jun N-terminal kinase (JNK)1 in destructive arthritis. Human TNF transgenic (hTNFtg) mice, which develop inflammatory arthritis, were intercrossed with JNK1-deficient (JNK1(-/-)) mice. Animals (n = 35) of all four genotypes (wild-type, JNK1(-/-), hTNFtg, JNK1(-/-)hTNFtg) were assessed for clinical and histological signs of arthritis. Clinical features of arthritis (swelling and decreased grip strength) developed equally in hTNFtg and JNK1(-/-)hTNFtg mice. Histological analyses revealed no differences in the quantity of synovial inflammation and bone erosions or in the cellular composition of the synovial infiltrate. Bone destruction and osteoclast formation were observed to a similar degree in hTNFtg and JNK1(-/-)hTNFtg animals. Moreover, cartilage damage, as indicated by proteoglycan loss in the articular cartilage, was comparable in the two strains. Intact phosphorylation of JNK and c-Jun as well as expression of JNK2 in the synovial tissue of JNK1(-/-)hTNFtg mice suggests that signalling through JNK2 may compensate for the deficiency in JNK1. Thus, JNK1 activation does not seem to be essential for TNF-mediated arthritis

    Treating spondyloarthritis, including ankylosing spondylitis and psoriatic arthritis, to target: recommendations of an international task force

    Get PDF
    Background: Therapeutic targets have been defined for diseases like diabetes, hypertension or rheumatoid arthritis and adhering to them has improved outcomes. Such targets are just emerging for spondyloarthritis (SpA). Objective: To define the treatment target for SpA including ankylosing spondylitis and psoriatic arthritis (PsA) and develop recommendations for achieving the target, including a treat-to-target management strategy. Methods: Based on results of a systematic literature review and expert opinion, a task force of expert physicians and patients developed recommendations which were broadly discussed and voted upon in a Delphi-like process. Level of evidence, grade and strength of the recommendations were derived by respective means. The commonalities between axial SpA, peripheral SpA and PsA were discussed in detail. Results: Although the literature review did not reveal trials comparing a treat-to-target approach with another or no strategy, it provided indirect evidence regarding an optimised approach to therapy that facilitated the development of recommendations. The group agreed on 5 overarching principles and 11 recommendations; 9 of these recommendations related commonly to the whole spectrum of SpA and PsA, and only 2 were designed separately for axial SpA, peripheral SpA and PsA. The main treatment target, which should be based on a shared decision with the patient, was defined as remission, with the alternative target of low disease activity. Follow-up examinations at regular intervals that depend on the patient's status should safeguard the evolution of disease activity towards the targeted goal. Additional recommendations relate to extra-articular and extramusculoskeletal aspects and other important factors, such as comorbidity. While the level of evidence was generally quite low, the mean strength of recommendation was 9-10 (10: maximum agreement) for all recommendations. A research agenda was formulated. Conclusions: The task force defined the treatment target as remission or, alternatively, low disease activity, being aware that the evidence base is not strong and needs to be expanded by future research. These recommendations can inform the various stakeholders about expert opinion that aims for reaching optimal outcomes of SpA

    Development of Standard Digital Images for Pneumoconiosis

    Get PDF
    We developed the standard digital images (SDIs) to be used in the classification and recognition of pneumoconiosis. From July 3, 2006 through August 31, 2007, 531 retired male workers exposed to inorganic dust were examined by digital (DR) and analog radiography (AR) on the same day, after being approved by our institutional review board and obtaining informed consent from all participants. All images were twice classified according to the International Labour Office (ILO) 2000 guidelines with reference to ILO standard analog radiographs (SARs) by four chest radiologists. After consensus reading on 349 digital images matched with the first selected analog images, 120 digital images were selected as the SDIs that considered the distribution of pneumoconiosis findings. Images with profusion category 0/1, 1, 2, and 3 were 12, 50, 40, and 15, respectively, and a large opacity were in 43 images (A = 20, B = 22, C = 1). Among pleural abnormality, costophrenic angle obliteration, pleural plaque and thickening were in 11 (9.2%), 31 (25.8%), and 9 (7.5%) images, respectively. Twenty-one of 29 symbols were present except cp, ef, ho, id, me, pa, ra, and rp. A set of 120 SDIs had more various pneumoconiosis findings than ILO SARs that were developed from adequate methods. It can be used as digital reference images for the recognition and classification of pneumoconiosis

    Nicotinic acetylcholine receptors modulate osteoclastogenesis

    Get PDF
    Background: Our aim was to investigate the role of nicotinic acetylcholine receptors (nAChRs) in in-vitro osteoclastogenesis and in in-vivo bone homeostasis. Methods: The presence of nAChR subunits as well as the in-vitro effects of nAChR agonists were investigated by ex vivo osteoclastogenesis assays, real-time polymerase chain reaction, Western blot and flow cytometry in murine bone marrow-derived macrophages differentiated in the presence of recombinant receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The bone phenotype of mice lacking various nAChR subunits was investigated by peripheral quantitative computed tomography and histomorphometric analysis. Oscillations in the intracellular calcium concentration were detected by measuring the Fura-2 fluorescence intensity. Results: We could demonstrate the presence of several nAChR subunits in bone marrow-derived macrophages stimulated with RANKL and M-CSF, and showed that they are capable of producing acetylcholine. nAChR ligands reduced the number of osteoclasts as well as the number of tartrate-resistant acidic phosphatase-positive mononuclear cells in a dose-dependent manner. In vitro RANKL-mediated osteoclastogenesis was reduced in mice lacking α7 homomeric nAChR or β2-containing heteromeric nAChRs, while bone histomorphometry revealed increased bone volume as well as impaired osteoclastogenesis in male mice lacking the α7 nAChR. nAChR ligands inhibited RANKL-induced calcium oscillation, a well-established phenomenon of osteoclastogenesis. This inhibitory effect on Ca2+ oscillation subsequently led to the inhibition of RANKL-induced NFATc1 and c-fos expression after long-term treatment with nicotine. Conclusions: We have shown that the activity of nAChRs conveys a marked effect on osteoclastogenesis in mice. Agonists of these receptors inhibited calcium oscillations in osteoclasts and blocked the RANKL-induced activation of c-fos and NFATc1. RANKL-mediated in-vitro osteoclastogenesis was reduced in α7 knockout mice, which was paralleled by increased tibial bone volume in male mice in vivo. © 2016 Mandl et al
    corecore