2,757 research outputs found
Evaluation and verification of epitaxial process sequence for silicon solar cell production
The applicability of solar cell and module processing sequences, to be used on lower cost epitaxial silicon wafers was evaluated. The extent to which the process sequences perform effectively when applied to film solar cells formed by epitaxial deposition of Si on potentially inexpensive substrates of upgraded metallurgical grade Si is examined. It is concluded that these substrates are satisfactory in their cell performance
The accretion-diffusion scenario for metals in cool white dwarfs
We calculated diffusion timescales for Ca, Mg, Fe in hydrogen atmosphere
white dwarfs with temperatures between 5000 and 25000 K. With these timescales
we determined accretion rates for a sample of 38 DAZ white dwarfs from the
recent studies of Zuckerman et al. (2003) and Koester et al. (2005). Assuming
that the accretion rates can be calculated with the Bondi-Hoyle formula for
hydrodynamic accretion, we obtained estimates for the interstellar matter
density around the accreting objects. These densities are in good agreement
with new data about the warm, partially ionized phase of the ISM in the solar
neighborhood.Comment: To be published in A&
A spin-boson thermal rectifier
Rectification of heat transfer in nanodevices can be realized by combining
the system inherent anharmonicity with structural asymmetry. we analyze this
phenomenon within the simplest anharmonic system -a spin-boson nanojunction
model. We consider two variants of the model that yield, for the first time,
analytical solutions: a linear separable model in which the heat reservoirs
contribute additively, and a non-separable model suitable for a stronger
system-bath interaction. Both models show asymmetric (rectifying) heat
conduction when the couplings to the heat reservoirs are different.Comment: 5 pages, 3 figures, RevTeX
Sodium Absorption From the Exoplanetary Atmosphere of HD189733b Detected in the Optical Transmission Spectrum
We present the first ground-based detection of sodium absorption in the
transmission spectrum of an extrasolar planet. Absorption due to the atmosphere
of the extrasolar planet HD189733b is detected in both lines of the NaI
doublet. High spectral resolution observations were taken of eleven transits
with the High Resolution Spectrograph (HRS) on the 9.2 meter Hobby-Eberly
Telescope (HET). The NaI absorption in the transmission spectrum due to
HD189733b is (-67.2 +/- 20.7) x 10^-5 deeper in the ``narrow'' spectral band
that encompasses both lines relative to adjacent bands. The 1-sigma error
includes both random and systematic errors, and the detection is >3-sigma. This
amount of relative absorption in NaI for HD189733b is ~3x larger than detected
for HD209458b by Charbonneau et al. (2002), and indicates these two
hot-Jupiters may have significantly different atmospheric properties.Comment: 12 pages, 2 figures; Accepted for publication in ApJ Letter
A Dusty Disk Around WD1150-153: Explaining the Metals in White Dwarfs by Accretion from the Interstellar Medium versus Debris Disks
We report the discovery of excess K-band radiation from a metal-rich DAV
white dwarf star, WD1150-153. Our near infrared spectroscopic observations show
that the excess radiation cannot be explained by a (sub)stellar companion, and
is likely to be caused by a debris disk similar to the other DAZ white dwarfs
with circumstellar debris disks. We find that the fraction of DAZ white dwarfs
with detectable debris disks is at least 14%. We also revisit the problem of
explaining the metals in white dwarf photospheres by accretion from the
interstellar medium (ISM). We use the observed interstellar column densities
toward stars in close angular proximity and similar distance as DAZ white
dwarfs to constrain the contribution of accretion from the ISM. We find no
correlation between the accretion density required to supply metals observed in
DAZs with the densities observed in their interstellar environment, indicating
that ISM accretion alone cannot explain the presence of metals in nearby DAZ
white dwarfs. Although ISM accretion will certainly contribute, our analysis
indicates that it is not the dominant source of metals for most DAZ white
dwarfs. Instead, the growing number of circumstellar debris disks around DAZs
suggests that circumstellar material may play a more dominant role in polluting
the white dwarf atmospheres.Comment: ApJ, in pres
Justification of Sexual Reproduction by Modified Penna Model of Ageing
We generalize the standard Penna bit-string model of biological ageing by
assuming that each deleterious mutation diminishes the survival probability in
every time interval by a small percentage. This effect is added to the usual
lethal but age-dependent effect of the same mutation. We then find strong
advantages or disadvantages of sexual reproduction (with males and females)
compared to asexual cloning, depending on parameters.Comment: 4 pages, 2 figures, submitted to Physica
Low frequency Rabi spectroscopy for a dissipative two-level system
We have analyzed the interaction of a dissipative two level quantum system
with high and low frequency excitation. The system is continuously and
simultaneously irradiated by these two waves. If the frequency of the first
signal is close to the level separation the response of the system exhibits
undamped low frequency oscillations whose amplitude has a clear resonance at
the Rabi frequency with the width being dependent on the damping rates of the
system. The method can be useful for low frequency Rabi spectroscopy in various
physical systems which are described by a two level Hamiltonian, such as nuclei
spins in NMR, double well quantum dots, superconducting flux and charge qubits,
etc. As the examples, the application of the method to a nuclear spin and to
the readout of a flux qubit are briefly discussed.Comment: 4 pages, 3 figures, the figures are modifie
Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem
Multiple time correlation functions are found in the dynamical description of
different phenomena. They encode and describe the fluctuations of the dynamical
variables of a system. In this paper we formulate a theory of non-Markovian
multiple-time correlation functions (MTCF) for a wide class of systems. We
derive the dynamical equation of the {\it reduced propagator}, an object that
evolve state vectors of the system conditioned to the dynamics of its
environment, which is not necessarily at the vacuum state at the initial time.
Such reduced propagator is the essential piece to obtain multiple-time
correlation functions. An average over the different environmental histories of
the reduced propagator permits us to obtain the evolution equations of the
multiple-time correlation functions. We also study the evolution of MTCF within
the weak coupling limit and it is shown that the multiple-time correlation
function of some observables satisfy the Quantum Regression Theorem (QRT),
whereas other correlations do not. We set the conditions under which the
correlations satisfy the QRT. We illustrate the theory in two different cases;
first, solving an exact model for which the MTCF are explicitly given, and
second, presenting the results of a numerical integration for a system coupled
with a dissipative environment through a non-diagonal interaction.Comment: Submitted (04 Jul 04
Exact quantum master equation for a molecular aggregate coupled to a harmonic bath
We consider a molecular aggregate consisting of identical monomers. Each
monomer comprises two electronic levels and a single harmonic mode. The
monomers interact with each other via dipole-dipole forces. The monomer
vibrational modes are bilinearly coupled to a bath of harmonic oscillators.
This is a prototypical model for the description of coherent exciton transport,
from quantum dots to photosynthetic antennae. We derive an exact quantum master
equation for such systems. Computationally, the master equation may be useful
for the testing of various approximations employed in theories of quantum
transport. Physically, it offers a plausible explanation of the origins of
long-lived coherent optical responses of molecular aggregates in dissipative
environments
- …