6,340 research outputs found
SEASAT B orbit synthesis
Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community
Upper limits on liquid water in the Venus atmosphere
Upper limits on liquid water in Venus atmosphere due to presence of hydrogen chlorid
Comparing supernova remnants around strongly magnetized and canonical pulsars
The origin of the strong magnetic fields measured in magnetars is one of the
main uncertainties in the neutron star field. On the other hand, the recent
discovery of a large number of such strongly magnetized neutron stars, is
calling for more investigation on their formation. The first proposed model for
the formation of such strong magnetic fields in magnetars was through
alpha-dynamo effects on the rapidly rotating core of a massive star. Other
scenarios involve highly magnetic massive progenitors that conserve their
strong magnetic moment into the core after the explosion, or a common envelope
phase of a massive binary system. In this work, we do a complete re-analysis of
the archival X-ray emission of the Supernova Remnants (SNR) surrounding
magnetars, and compare our results with all other bright X-ray emitting SNRs,
which are associated with Compact Central Objects (CCOs; which are proposed to
have magnetar-like B-fields buried in the crust by strong accretion soon after
their formation), high-B pulsars and normal pulsars. We find that emission
lines in SNRs hosting highly magnetic neutron stars do not differ significantly
in elements or ionization state from those observed in other SNRs, neither
averaging on the whole remnants, nor studying different parts of their total
spatial extent. Furthermore, we find no significant evidence that the total
X-ray luminosities of SNRs hosting magnetars, are on average larger than that
of typical young X-ray SNRs. Although biased by a small number of objects, we
found that for a similar age, there is the same percentage of magnetars showing
a detectable SNR than for the normal pulsar population.Comment: 16 pages, 5 figures, Accepted for publication in MNRA
To sell or not to sell? Behavior of shareholders during price collapses
It is a common belief that the behavior of shareholders depends upon the
direction of price fluctuations: if prices increase they buy, if prices
decrease they sell. That belief, however, is more based on ``common sense''
than on facts. In this paper we present evidence for a specific class of
shareholders which shows that the actual behavior of shareholders can be
markedly different.Comment: 9 pages, 1 figure. To appear in International Journal of Modern
Physics
The Spectral Evolution of Transient Anomalous X-ray Pulsar XTE J1810--197
(Abridged) We present a multi-epoch spectral study of the Transient Anomalous
X-ray Pulsar XTE J1810-197 obtained with the XMM X-ray telescope. Four
observations taken over the course of a year reveal strong spectral evolution
as the source fades from outburst. The origin of this is traced to the
individual decay rates of the pulsar's spectral components. A 2-T fit at each
epoch requires nearly constant temperatures of kT=0.25 & 0.67 keV while the
component luminosities decrease exponentially with tau=900 & 300d,
respectively. One possible interpretation is that the slowly decaying cooler
component is the radiation from a deep heating event that affected a large
fraction of the crust, while the hotter component is powered by external
surface heating at the foot-points of twisted magnetic field lines, by
magnetospheric currents that are decaying more rapidly. The energy-dependent
pulse profile of XTE J1810-197 is well modeled at all epochs by the sum of a
sine and triangle function. These profiles peak at the same phase, suggesting a
concentric surface emission geometry. The spectral and pulse evolution together
argue against the presence of a significant ``power-law'' contribution to the
X-ray spectrum below 8 keV. The extrapolated flux is projected to return to the
historic quiescent level, characterized by an even cooler blackbody spectrum,
by the year 2007.Comment: 12 pages, 6 Figures, Latex, emulateapj. To appear in the
Astrophysical Journa
Population Synthesis of Isolated Neutron Stars with magneto-rotational evolution II: from radio-pulsars to magnetars
Population synthesis studies constitute a powerful method to reconstruct the
birth distribution of periods and magnetic fields of the pulsar population.
When this method is applied to populations in different wavelengths, it can
break the degeneracy in the inferred properties of initial distributions that
arises from single-band studies. In this context, we extend previous works to
include -ray thermal emitting pulsars within the same evolutionary model as
radio-pulsars. We find that the cumulative distribution of the number of X-ray
pulsars can be well reproduced by several models that, simultaneously,
reproduce the characteristics of the radio-pulsar distribution. However, even
considering the most favourable magneto-thermal evolution models with fast
field decay, log-normal distributions of the initial magnetic field
over-predict the number of visible sources with periods longer than 12 s. We
then show that the problem can be solved with different distributions of
magnetic field, such as a truncated log-normal distribution, or a binormal
distribution with two distinct populations. We use the observational lack of
isolated NSs with spin periods P>12 s to establish an upper limit to the
fraction of magnetars born with B > 10^{15} G (less than 1\%). As future
detections keep increasing the magnetar and high-B pulsar statistics, our
approach can be used to establish a severe constraint on the maximum magnetic
field at birth of NSs.Comment: 12 pages, 11 figures, 5 table
Lighting as a Circadian Rhythm-Entraining and Alertness-Enhancing Stimulus in the Submarine Environment
The human brain can only accommodate a circadian rhythm that closely follows 24 hours. Thus, for a work schedule to meet the brain’s hard-wired requirement, it must employ a 24 hour-based program. However, the 6 hours on, 12 hours off (6/12) submarine watchstanding schedule creates an 18-hour “day” that Submariners must follow. Clearly, the 6/12 schedule categorically fails to meet the brain’s operational design, and no schedule other than one tuned to the brain’s 24 hour rhythm can optimize performance. Providing Submariners with a 24 hour-based watchstanding schedule—combined with effective circadian entrainment techniques using carefully-timed exposure to light—would allow crewmembers to work at the peak of their daily performance cycle and acquire more restorative sleep. In the submarine environment, where access to natural light is absent, electric lighting can play an important role in actively entraining—and closely maintaining—circadian regulation. Another area that is likely to have particular importance in the submarine environment is the potential effect of light to help restore or maintain alertness
- …