17 research outputs found

    Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Full text link
    A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM) @10 t ha-1 gave significantly (P≤0.05) higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N) and Potassium oxide (K2O) @ 50 kg ha-1 produced significantly (P≤0.05) the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P), Potassium (K) treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05) effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8), soil organic matter (4.1%), total N content (0.16%), available P (503.5 kg P2O5 ha-1) and exchangeable K (137.5 kg K2O ha-1) in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.Journal of Nepal Agricultural Research Council Vol.1 2015 pp.21-2

    Analysis of Yield Attributing Characters of Different Genotypes of Wheat in Rupandehi, Nepal

    Full text link
    Field experiment was conducted at National Wheat Research Program, Bhairahawa, Rupandehi with the objective to identify high yielding superior wheat genotypes for Rupandehi district of Nepalduring 2014. Experiment was laid out in one factorial Randomized completely block design with ten wheat genotypes including both released and promising; Annapurna 1, Annapurna 3, Pasang Lahmu, Bijaya, BL 3623, Bhirkuti, NL 297, BL 4316, BL 3978 and BL 4347with three replications. The results showed that the grain yield of BL 3978 was found higher (4.03 t ha-1) than other genotypes followed by BL 4347 (3.93t ha-1). BL 3978 have also higher number of effective tillers m-2 and test weight. Among release varieties, NL 297 show higher yield (4 t ha-1) followed by Bhirkuti (3.43 t ha-1)and Bijaya (3.37 t ha-1). From this experiment it can be concluded that BL 3978 was found promising among all genotypes however should be tested at on-farms before promoted for general cultivation in Rupandehi district of Nepal

    Search for Long-Lived Particles Decaying in the CMS End Cap Muon Detectors in Proton-Proton Collisions at root s=13 TeV

    No full text
    A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137 fb(-1) of proton-proton collisions at root s = 13 TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the end cap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and tau(+)tau(-) are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s= \sqrt{s} = 13 TeV

    No full text
    A search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s= \sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1 ^{-1} collected in 2016--2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ> p_{\mathrm{T}}^{\gamma} > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ> m_{\gamma\gamma} > 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1 |\zeta_1| 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s\sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1^{-1} collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ>p_\mathrm{T}^\gamma > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV

    Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer

    No full text
    International audienceThe Precision Proton Spectrometer (PPS) of the CMS and TOTEM experiments collected 107.7 fb1^{-1} in proton-proton (pp) collisions at the LHC at 13 TeV (Run 2). This paper describes the key features of the PPS alignment and optics calibrations, the proton reconstruction procedure, as well as the detector efficiency and the performance of the PPS simulation. The reconstruction and simulation are validated using a sample of (semi)exclusive dilepton events. The performance of PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high luminosity hadron collider

    Search for central exclusive production of top quark pairs in proton-proton collisions at s= \sqrt{s} = 13 TeV with tagged protons

    No full text
    A search for the central exclusive production of top quark-antiquark pairs (ttˉ \mathrm{t} \bar{\mathrm{t}} ) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1 ^{-1} . The ttˉ \mathrm{t} \bar{\mathrm{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%.A search for the central exclusive production of top quark-antiquark pairs (ttˉ\mathrm{t\bar{t}}) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1^{-1}. The ttˉ\mathrm{t\bar{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%

    Search for central exclusive production of top quark pairs in proton-proton collisions at s\sqrt{s} = 13 TeV with tagged protons

    No full text
    International audienceA search for the central exclusive production of top quark-antiquark pairs (ttˉ\mathrm{t\bar{t}}) is performed for the first time using proton-tagged events in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 29.4 fb1^{-1}. The ttˉ\mathrm{t\bar{t}} decay products are reconstructed using the central CMS detector, while forward protons are measured in the CMS-TOTEM precision proton spectrometer. An observed (expected) upper bound on the production cross section of 0.59 (1.14) pb is set at 95% confidence level, for collisions of protons with fractional momentum losses between 2 and 20%

    Search for high-mass exclusive diphoton production with tagged protons in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is presented for high-mass exclusive diphoton production via photon-photon fusion in proton-proton collisions at s\sqrt{s} = 13 TeV in events where both protons survive the interaction. The analysis utilizes data corresponding to an integrated luminosity of 103 fb1^{-1} collected in 2016-2018 with the central CMS detector and the CMS and TOTEM precision proton spectrometer (PPS). Events that have two photons with high transverse momenta (pTγ>p_\mathrm{T}^\gamma > 100 GeV), back-to-back in azimuth, and with a large diphoton invariant mass (mγγ>m_{\gamma\gamma} \gt 350 GeV) are selected. To remove the dominant inclusive diphoton backgrounds, the kinematic properties of the protons detected in PPS are required to match those of the central diphoton system. Only events having opposite-side forward protons detected with a fractional momentum loss between 0.035 and 0.15 (0.18) for the detectors on the negative (positive) side of CMS are considered. One exclusive diphoton candidate is observed for an expected background of 1.1 events. Limits at 95% confidence level are derived for the four-photon anomalous coupling parameters ζ1<\lvert\zeta_1\rvert \lt 0.073 TeV4^{-4} and ζ2<\lvert\zeta_2\rvert \lt 0.15 TeV4^{-4}, using an effective field theory. Additionally, upper limits are placed on the production of axion-like particles with coupling strength to photons f1f^{-1} that varies from 0.03 TeV1^{-1} to 1 TeV1^{-1} over the mass range from 500 to 2000 GeV
    corecore