150 research outputs found

    The CMB Derivatives of Planck's Beam Asymmetry

    Full text link
    We investigate the anisotropy in cosmic microwave background Planck maps due to the coupling between its beam asymmetry and uneven scanning strategy. Introducing a pixel space estimator based on the temperature gradients, we find a highly significant (~20 \sigma) preference for these to point along ecliptic latitudes. We examine the scale dependence, morphology and foreground sensitivity of this anisotropy, as well as the capability of detailed Planck simulations to reproduce the effect, which is crucial for its removal, as we demonstrate in a search for the weak lensing signature of cosmic defects.Comment: 5 pages, 9 figures Published in MNRA

    Studying the Peculiar Velocity Bulk Flow in a Sparse Survey of Type-Ia SNe

    Full text link
    Studies of the peculiar velocity bulk flow based on different tools and datasets have been consistent so far in their estimation of the direction of the flow, which also happens to lie in close proximity to several features identified in the cosmic microwave background, providing motivation to use new compilations of type-Ia supernovae measurements to pinpoint it with better accuracy and up to higher redshift. Unfortunately, the peculiar velocity field estimated from the most recent Union2.1 compilation suffers from large individual errors, poor sky coverage and low redshift-volume density. We show that as a result, any naive attempt to calculate the best-fit bulk flow and its significance will be severely biased. Instead, we introduce an iterative method which calculates the amplitude and the scatter of the direction of the best-fit bulk flow as deviants are successively removed and take into account the sparsity of the data when estimating the significance of the result. Using 200 supernovae up to a redshift of z=0.2, we find that while the amplitude of the bulk flow is marginally consistent with the value expected in a LCDM universe given the large bias, the scatter of the direction is significantly low (at >= 99.5 C.L.) when compared to random simulations, supporting the quest for a cosmological origin.Comment: 7 pages, 6 figures; typos fixed; clarifications made; important references adde

    Henri Temianka Correspondence; (rathaus)

    Get PDF
    https://digitalcommons.chapman.edu/temianka_correspondence/2684/thumbnail.jp

    Disputa teologica in un mondo alla rovescia: il dramma su Abramo di Moshè Zacuto

    Get PDF
    Theological controversy in a reversed world;  Moshe Zacuto's drama on Abraham.The foundation of the world (Yessod 'Olam) is believed to be the first Biblical drama written in Hebrew.  It was composed in the first half of the 17th century by the mystical and rabbinical author Moshe Zacuto, who immigrated to Italy from Amsterdam.  In fact the work is mostly based on rabbinic legends about Abraham and his struggle against idolatry, and includes many theological debates between the patriarch and King Nimrod, the pagan tyrant who condemns him to be burnt for his ideas. This paper deals with the ideological background of the drama and the peculiar and paradoxical atmosphere created by the theological debates.  As asserted by several scholars (Berliner, Schirmann. Levy), Zacuto, who was born in a refugees family of  Marrano origin,  alluded in his play to the persecutions of the Jews by the Inquisition in Spain and Portugal. On the other hand, it seems that the play also alludes to 17th Century materialistic philosophy and hedonism, symbolized by the words of Nimrod and his sages.  At any rate, the struggle between Abraham and Nimrod takes place in a highly absurd ideological frame, in which right and wrong are meaningless concepts and true faith is considered as a sort of moral perversion: a reversed world. The paper underlines this hidden and ironic aspect of the play and discusses it, on the basis of some classic works on Carnival reversion, like Cocchiara's Il mondo alla rovescia  and Bakhtin' s Rabelais and his world

    How Sensitive is the CMB to a Single Lens?

    Full text link
    We study the imprints of a single lens, that breaks statistical isotropy, on the CMB and calculate the signal to noise ratio (S/N) for its detection. We emphasize the role of non-Gaussianities induced by LCDM weak lensing in this calculation and show that typically the S/N is much smaller than expected. In particular we find that the hypothesis that a void (texture) is responsible for the WMAP cold spot can barely (cannot) be tested via weak lensing of the CMB.Comment: Accepted for publication in JCAP, 24 pages, 5 figure

    CMB Imprints of a Pre-Inflationary Climbing Phase

    Get PDF
    We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of "brane SUSY breaking" scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a range of parameters, examine their statistical significance, and provide a semi-analytic rationale for our results. It is tempting to ascribe at least part of the large-angle anomalies in the CMB to pre-inflationary dynamics of this type.Comment: 38 pages, LaTeX, 11 eps figures, references added, matches version to appear in JCA

    Gas Accretion and Galactic Chemical Evolution: Theory and Observations

    Full text link
    This chapter reviews how galactic inflows influence galaxy metallicity. The goal is to discuss predictions from theoretical models, but particular emphasis is placed on the insights that result from using models to interpret observations. Even as the classical G-dwarf problem endures in the latest round of observational confirmation, a rich and tantalizing new phenomenology of relationships between MM_*, ZZ, SFR, and gas fraction is emerging both in observations and in theoretical models. A consensus interpretation is emerging in which star-forming galaxies do most of their growing in a quiescent way that balances gas inflows and gas processing, and metal dilution with enrichment. Models that explicitly invoke this idea via equilibrium conditions can be used to infer inflow rates from observations, while models that do not assume equilibrium growth tend to recover it self-consistently. Mergers are an overall subdominant mechanism for delivering fresh gas to galaxies, but they trigger radial flows of previously-accreted gas that flatten radial gas-phase metallicity gradients and temporarily suppress central metallicities. Radial gradients are generically expected to be steep at early times and then flattened by mergers and enriched inflows of recycled gas at late times. However, further theoretical work is required in order to understand how to interpret observations. Likewise, more observational work is needed in order to understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springer. 29 pages, 2 figure
    corecore