4,187 research outputs found

    Building Partners’ Capacity—The Thousand-Ship Navy

    Get PDF
    Nearly two years after a bold proposal of a “thousand-ship navy,” little progress seems to have been made in constituting it. Part of the reason is that the U.S. Navy does not seem to appreciate how the idea looks to many nations whose navies might participate

    Fragment Approach to Constrained Density Functional Theory Calculations using Daubechies Wavelets

    Full text link
    In a recent paper we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions is optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e. without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

    Diffusion versus linear ballistic accumulation: different models but the same conclusions about psychological processes?

    Get PDF
    Quantitative models for response time and accuracy are increasingly used as tools to draw conclusions about psychological processes. Here we investigate the extent to which these substantive conclusions depend on whether researchers use the Ratcliff diffusion model or the Linear Ballistic Accumulator model. Simulations show that the models agree on the effects of changes in the rate of information accumulation and changes in non-decision time, but that they disagree on the effects of changes in response caution. In fits to empirical data, however, the models tend to agree closely on the effects of an experimental manipulation of response caution. We discuss the implications of these conflicting results, concluding that real manipulations of caution map closely, but not perfectly to response caution in either model. Importantly, we conclude that inferences about psychological processes made from real data are unlikely to depend on the model that is used

    Accurate and efficient linear scaling DFT calculations with universal applicability

    Full text link
    Density Functional Theory calculations traditionally suffer from an inherent cubic scaling with respect to the size of the system, making big calculations extremely expensive. This cubic scaling can be avoided by the use of so-called linear scaling algorithms, which have been developed during the last few decades. In this way it becomes possible to perform ab-initio calculations for several tens of thousands of atoms or even more within a reasonable time frame. However, even though the use of linear scaling algorithms is physically well justified, their implementation often introduces some small errors. Consequently most implementations offering such a linear complexity either yield only a limited accuracy or, if one wants to go beyond this restriction, require a tedious fine tuning of many parameters. In our linear scaling approach within the BigDFT package, we were able to overcome this restriction. Using an ansatz based on localized support functions expressed in an underlying Daubechies wavelet basis -- which offers ideal properties for accurate linear scaling calculations -- we obtain an amazingly high accuracy and a universal applicability while still keeping the possibility of simulating large systems with only a moderate demand of computing resources

    Daubechies Wavelets for Linear Scaling Density Functional Theory

    Get PDF
    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of DFT calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the contracted basis functions for closely related environments, e.g. in geometry optimizations or combined calculations of neutral and charged systems
    • …
    corecore