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We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized
localized adaptively-contracted basis functions in which the Kohn-Sham orbitals can be represented
with an arbitrarily high, controllable precision. Ground state energies and the forces acting on
the ions can be calculated in this basis with the same accuracy as if they were calculated directly
in a Daubechies wavelets basis, provided that the amplitude of these adaptively-contracted basis
functions is sufficiently small on the surface of the localization region, which is guaranteed by the
optimization procedure described in this work. This approach reduces the computational costs
of DFT calculations, and can be combined with sparse matrix algebra to obtain linear scaling
with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or
more thus become feasible in a systematic basis set with moderate computational resources. Further
computational savings can be achieved by exploiting the similarity of the adaptively-contracted basis
functions for closely related environments, e.g. in geometry optimizations or combined calculations
of neutral and charged systems.

I. INTRODUCTION

The Kohn-Sham (KS) formalism of density functional
theory (DFT)1,2 is one of the most popular electronic
structure methods due to its good balance between ac-
curacy and speed. Thanks to the development of new
approximations to the exchange correlation functional,
this approach now allows many quantities (bond lengths,
vibration frequencies, elastic constants, etc.) to be calcu-
lated with errors of less than a few percent, which is suf-
ficient for many applications in solid state physics, chem-
istry, materials science, biology, geology and many other
fields. Although the KS approach has some shortcom-
ings – e.g. its inability to accurately describe the HOMO-
LUMO separation or many-body (e.g. excitonic) effects,
thus reducing its predictive power in the field of optics –
it has become the standard for the quantum simulation
of matter and also provides a well defined starting point
for more accurate methods, such as the GW approxima-
tion3.

Despite the efforts put forth to increase the efficiency
of DFT calculations and the increasing computing power
of modern supercomputers, the applicability for stan-
dard calculations is limited to systems containing about
a thousand atoms, which is small compared to the size
of systems of interest in nanoscience. The reason for
this is that standard electronic structure programs using
systematic basis sets such as plane waves4–6 , finite el-
ements7 or wavelets8 need a number of operations that
scales as the number of orbitals, Norb, squared times the
number of basis functions, Nbasis, used to represent them.
Since both the number of orbitals and the number of basis
functions scale as the number of atoms, the overall cost
scales as O(N2

orbNbasis) = O(N3
atom). Electronic struc-

ture programs that use Gaussians9 or atomic orbitals10

require in a standard implementation a matrix diagonal-

ization which scales as O(N3
basis).

To circumvent this problem, one can exploit Kohn’s
nearsightedness principle11–13, which states that, for sys-
tems with a finite gap or for metals at finite temperature,
all physical quantities are determined by the local envi-
ronment. This is a consequence of the exponentially fast
decay of the density matrix13–19. Therefore, it is theo-
retically possible to express the KS wavefunctions of a
given system in terms of a minimal, localized basis set.
In order to get highly accurate results while still keeping
the size of the basis relatively small, such a basis has to
depend on the local chemical environment. If this basis
set were known or could be approximated beforehand, it
would lead to a computationally cheap tight-binding like
approach20,21. Of course, in practice it is not possible
to determine this optimal localized basis set beforehand;
instead it has to be built up iteratively during the cal-
culation. This would result in O(N3

orb) scaling, which is
still equivalent to O(N3

atom), but with a much smaller
prefactor than systematic approaches (e.g. plane waves)
where the number of basis functions is far greater than
the number of orbitals (Nbasis ≫ Norb).

However, the use of a strictly localized basis offers yet
another possibility. As has been demonstrated during
the past twenty years22,23, it is possible to truncate the
density matrix and thus transform it into a sparse form
by neglecting elements either when they are below a cer-
tain threshold, or when they correspond to localized or-
bitals which are too distant from each other. This reduces
the complexity of the algorithm to O(Norb)=O(Natom)
and leads to so-called linear scaling (LS) DFT methods.
Even though the exponential decay of the density ma-
trix is as well present for metals at finite temperature,
we will – as most O(Natom) approaches – focus on the
simpler case of insulators. Methods of this type have
been implemented in numerous codes such as onetep24,

http://arxiv.org/abs/1401.7441v2
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Conquest25, CP2K26 and siesta
27. Note, however, that

the extent of the truncation impacts the accuracy due to
the imposition of an additional constraint on the system,
and is therefore left as a freely selectable parameter for
the user. This additional constraint also comes at the
cost of extra computational steps, so that the prefactor
is greater than for standard DFT codes, even for a sin-
gle iteration in the self-consistency cycle. Furthermore,
there can be problems with ill-conditioning when using
strictly localized basis sets, which further increases the
prefactor. The combination of these two problems means
that for small systems the total calculation time is actu-
ally greater when one imposes locality, but thanks to the
better scaling, there is a crossover point where the new
algorithms become more efficient.

Our minimal set of localized adaptively-contracted ba-
sis functions, called support functions in the following,
is obtained by an environment dependent optimization
where the support functions are represented in terms of
a fixed underlying wavelet basis set. The term adaptively-

contracted should not be confused with the terminol-
ogy of contracted basis functions often used in quan-
tum chemistry, it is simply used to emphasize that there
are two levels of basis functions, namely the underlying
wavelets basis and the support functions which are built
out of them. Because of the environment dependency,
the size of this basis set is however for a given accuracy
much smaller than the size of typical contracted Gaus-
sian basis sets and we refer to this basis set therefore also
as a minimal basis set.

The choice of the underlying basis set is one of the most
important aspects impacting the accuracy and efficiency
of a linear scaling DFT code. Ideally, it should feature
compact support while still being orthogonal, thus allow-
ing for a systematic convergence – properties which are
all offered by Daubechies wavelets basis sets28. Further-
more, wavelets have built in multiresolution properties,
enabling an adaptive mesh with finer sampling close to
the atoms where the most significant part of the orbitals
is located; this can be particularly beneficial for inho-
mogeneous systems. Wavelets also have the distinct ad-
vantage that calculations can be performed with all the
standard boundary conditions – free, wire, surface or pe-
riodic. This also means we can perform calculations on
charged and polarized systems using free boundary con-
ditions without the need for a compensating background
charge. It is therefore evident that the combination of the
above features makes wavelets ideal for a LSDFT code.

This paper is organized as follows. We first give an
overview of the method, focussing in particular on the
imposition of the localization constraint in Daubechies
wavelets. We then discuss the details, highlighting the
novel features, following which we consider the calcula-
tion of atomic forces. For this latter point, we demon-
strate the remarkable result that, thanks to the compact
support of Daubechies wavelets, the contribution of the
Pulay-like forces, arising from the introduction of the lo-
calization regions, can be safely neglected in a typical

calculation. We then present results for a number of sys-
tems, illustrating the accuracy of the method for ground
state energies and atomic forces. We also demonstrate
the improved scaling compared with standard BigDFT,
showing that we are able to achieve linear scaling. Fi-
nally, we highlight two cases where the minimal basis
functions can be reused, resulting in further significant
computational savings.

II. MINIMAL ADAPTIVELY-CONTRACTED

BASIS

A. Kohn-Sham formalism in a minimal basis set

The standard approach for performing Kohn-Sham
DFT calculations is to calculate the Kohn-Sham orbitals
|Ψi〉 which satisfy the equation

HKS |Ψi〉 = εi |Ψi〉 , (1)

with

HKS = −
1

2
∇2 + VKS [ρ] + VPSP , (2)

where VKS [ρ] contains the Hartree potential – solution
to the Poisson equation – and the exchange-correlation
potential, while VPSP contains the potential arising
from the pseudopotential and the external potential
created by the ions. In the case of BigDFT, these
are norm-conserving GTH-HGH29 pseudopotentials and
their Krack variants30, possibly with a nonlinear core cor-
rection31. It is worth noting that the use of pseudopoten-
tials does not only decrease the complexity of the calcula-
tion by reducing the number of orbitals and avoiding the
need of very high resolution around the nuclei, but also
offers the possibility of easily including relativistic effects.
Furthermore the calculation of the Hartree and exchange-
correlation potentials are done in the same way as in the
original version of BigDFT8 and are thus not subject to
any approximations. For the exchange-correlation part
we restrict ourselves to local functionals.

In our approach the KS orbitals are in turn expressed
as a linear combination of support functions |φα〉:

|Ψi(r)〉 =
∑

α

cαi |φα(r)〉 . (3)

The density – which can be obtained from the one-
electron orbitals via ρ(r) =

∑
i fi|Ψi(r)|

2, where fi is the
occupation number of orbital i – is given by

ρ(r) =
∑

α,β

φ∗α(r)K
αβφβ(r), (4)

whereKαβ =
∑

i fic
∗α
i c

β
i is the density kernel. The latter

is related to the density matrix formulation of Hernández
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and Gillan32, since – as follows from Eq. (3) –

F (r, r′) =
∑

i

fi |Ψi(r)〉 〈Ψi(r
′)|

=
∑

α,β

|φα(r)〉K
αβ 〈φβ(r

′)| .
(5)

Thus the density kernel is the representation of the den-
sity matrix in the support function basis. We choose to
have real support functions and thus from now on we will
neglect the complex notation for this quantity.
The density matrix decays exponentially with respect

to the distance |r − r′| for systems with a finite gap or
for metals at finite temperature13–19. In these cases it
can therefore be represented by strictly localized basis
functions. A natural and exact choice for these would be
the maximally localized Wannier functions which have
the same exponential decay33. Of course, these Wannier
functions are not known beforehand. Therefore, in our
case, the adaptively-contracted basis functions are con-
structed in situ during the self-consistency cycle and are
expected to reach a quality similar to that of the exact
Wannier functions.
In the formalism we have presented so far, the KS or-

bitals have to be optimized by minimizing the total en-
ergy with respect to the support functions and density
kernel. For a self-consistent calculation this is equivalent
to minimizing the band structure energy, i.e.

EBS =
∑

α,β

KαβHαβ , (6)

subject to the orthonormality condition of the KS or-
bitals,

〈Ψi |Ψj〉 =
∑

α,β

cα∗i Sαβc
β
j = δij , (7)

where Hαβ = 〈φα | HKS |φβ〉 and Sαβ = 〈φα |φβ〉 are the
Hamiltonian and overlap matrices of the support func-
tions, respectively. For systems with all occupation num-
bers being either zero or one, this is equivalent to im-
posing the idempotency condition on the density kernel
Kαβ,

∑

γ,δ

KαγSγδK
δβ = Kαβ , (8)

which can be achieved using the McWeeny purification
scheme34 or directly imposing the orthogonality con-
straint on the coefficients cαi
The algorithm therefore consists of two key compo-

nents: support function and density kernel optimization.
The workflow is illustrated in Fig. 1; it consists of a flex-
ible double loop structure, with the outer loop control-
ling the overall convergence, and two inner loops which
optimize the support functions and density kernel, re-
spectively. The first of these inner loops is done non-
self-consistently (i.e. with a fixed potential), whereas the
second one is done self-consistently.

FIG. 1. Structure of the minimal basis approach: for the ba-
sis optimization loop the hybrid scheme can be used instead
of trace or energy minimization, and for the kernel optimiza-
tion loop either direct minimization or the Fermi operator
expansion method can be used in place of diagonalization;
see Sec IV.
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FIG. 2. Least asymmetric Daubechies wavelet family of order
2m = 16; both the scaling function φ(x) and wavelet ψ(x)
differ from zero only within the interval [1−m,m].

B. Daubechies wavelets in BigDFT

BigDFT8 uses the orthogonal least asymmetric
Daubechies28 family of order 2m = 16, illustrated in
Fig. 2. These functions have a compact support and
are smooth, which means that they are also localized
in Fourier space. This wavelet family is able to exactly
represent polynomials up to 8th order. Such a basis is
therefore an optimal choice given that we desire at the
same time locality and interpolating power. An exhaus-
tive presentation of the use of wavelets in numerical sim-
ulations can be found in Ref. 35.

A wavelet basis set is generated by the integer trans-
lates of the scaling functions and wavelets, with argu-
ments measured in units of the grid spacing h. In three
dimensions, a wavelet basis set can easily be obtained
as the tensor product of one-dimensional basis functions,
combining wavelets and scaling functions along each co-
ordinate of the Cartesian grid (see e.g. Ref. 8).
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In a simulation domain, we have three categories of
grid points: those which are closest to the atoms (“fine
region”) carry one (three-dimensional) scaling function
and seven (three-dimensional) wavelets; those which are
further away from the atoms (“coarse region”) carry only
one scaling function, corresponding to a resolution which
is half that of the fine region; and those which are even
further away (“empty region”) carry neither scaling func-
tions nor wavelets. The fine region is typically the region
where chemical bonding takes place, whereas the coarse
region covers the region where the tails of the wavefunc-
tions decay smoothly to zero. We therefore have two res-
olution levels whilst maintaining a regularly spaced grid
in the entire simulation box.
A support function φα(r) can be expanded in this

wavelet basis as follows:

φ(r) =
∑

i1,i2,i3

si1,i2,i3ϕi1,i2,i3(r)

+
∑

j1,j2,j3

7∑

l=1

d
(ℓ)
j1,j2,j3

ψ
(ℓ)
j1,j2,j3

(r), (9)

where ϕi1,i2,i3(r) = ϕ(x − i1)ϕ(y − i2)ϕ(z − i3) is the
tensor product of three one-dimensional scaling functions

centered at the grid point (i1, i2, i3), and ψ
(ℓ)
j1,j2,j3

(r) are
the seven tensor products containing at least one one-
dimensional wavelet centered on the grid point (j1, j2, j3).
The sums over i1, i2, i3 (j1, j2, j3) run over all grid points
where scaling functions (wavelets) are centered, i.e. all
the points of the coarse (fine) grid. The overall simulation
box is chosen to be rectangular and is identical to the
one in the standard version of BigDFT; for simplicity
the origin is chosen such that there are only positive grid
coordinates, i.e. in a corner of the simulation domain.
To determine these regions of different resolution, we

construct two spheres around each atom a; a small one
with radius Rf

a = λf · rfa and a large one with radius
Rc

a = λc · rca (Rc
a > Rf

a). The values of rfa and rca are
characteristic for each atom type and are related to the
covalent and van der Waals radii, whereas λf and λc can
be specified by the user in order to control the accuracy
of the calculation. The fine (coarse) region is then given
by the union of all the small (large) spheres, as shown in
Fig. 3.
Hence in BigDFT the basis set is controlled by these

three user specified parameters. By reducing h and/or in-
creasing λc and λf the computational degrees of freedom
are incremented, leading to a systematic convergence of
the energy.

III. LOCALIZATION REGIONS

Thanks to the nearsightedness principle it is possible to
define a basis of strictly localized support functions such
that the KS orbitals given in terms of this adaptively-
contracted basis are exactly equivalent to the expression

FIG. 3. A two level adaptive grid for an alkane: the high
resolution grid points are shown with bold points while the
low resolution grid points are shown with smaller points. Also
visible are three localization regions (red, blue and green) with
radii of 3.7 Å centered on different atoms in which certain
support functions will reside. The coarse grid points shown
in yellow do not belong to any of the three localization regions.

based solely on the underlying Daubechies basis. How-
ever, as presented so far, the support functions φα(r) of
Eq. (9) are expanded over the entire simulation domain.
We want them to be strictly localized while still contain-
ing various resolution levels, as illustrated by Fig. 3, and
so we set to zero all scaling function and wavelet coeffi-
cients which lie outside a sphere of radius Rcut around
the point Rα on which the support function is centered.
In general, these centers Rα could be anywhere, but we
choose them to be centered on an atom a and we thus
assume from now on that Rα = Ra. Consequently we
define a localization projector L(α), which is written in
the Daubechies basis space as

L
(α)
i1,i2,i3;j1,j2,j3

= δi1j1δi2j2δi3j3θ(Rcut−|R(i1,i2,i3)−Rα|) ,

(10)
where θ is the Heaviside function. We use this projector
to constrain the function |φα〉 to be localized throughout
the calculation, i.e.

|φα〉 = L
(α)|φα〉 . (11)

Clearly, if |φα〉 is localized around Rα and Rcut is large
enough, L(α) leaves |φα〉 unchanged and no approxima-
tion is introduced to the KS equation.

It is important to note that the localization constraint
of Eq. (11) determines the expression of dφα

dRβ
outside the

localization region of φα. Indeed, as the Daubechies basis
set is independent of Rα, differentiating Eq. (11) with
respect to Rβ leads to

(
1− L(α)

)
|
dφα
dRβ

〉 = δαβ
∂L(α)

∂Rα
|φα〉 . (12)

This result will be used in Appendix C 2 to demonstrate
that the Pulay-like forces are negligible for a typical cal-
culation with our approach.
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A. Imposing the localization constraint

In what follows, we demonstrate that choosing the sup-
port functions to be orthogonal allows for a more straigh-
forward application of the localization constraint. Due
to the orthonormality of the KS orbitals we cannot di-
rectly minimize the band structure energy (Eq. (6)) with
respect to the support functions, rather we have to min-
imize the following functional:

Ω =
∑

α,β

KαβHαβ −
∑

i,j

∑

α,β

Λij

(
cα∗i c

β
j Sαβ − δij

)
, (13)

with the Lagrange multiplier coefficients Λij determined
by the relation

∑

i,j

cα∗i c
β
j Λij =

∑

ρ,σ

KαρHρσ(S
−1)σβ , (14)

where (S−1)αβ is the inverse overlap matrix. The gradi-

ent |gα〉 =
∣∣∣ δΩ
δ〈φα|

〉
is therefore

|gα〉 =
∑

β

KαβHKS |φβ〉 −
∑

β,ρ,σ

KαρHσρ(S
−1)σβ |φβ〉 .(15)

However, we wish to impose the localization condition
|φα〉 = L

(α)|φα〉 on the support functions and therefore
the functional to be minimized becomes

Ω′ = Ω−
∑

α

〈
φα

∣∣∣ 1− L(α)
∣∣∣ ℓα
〉
, (16)

where the components of the vector |ℓα〉 are the Lagrange
multipliers of this locality constraint. The gradient for

Ω′,
∣∣∣ δΩ′

δ〈φα|

〉
, can therefore be written as

|g′α〉 = |gα〉 − (1 − L(α)) |ℓα〉 . (17)

Using the stationarity condition 0 = |g′α〉 and combining
with the fact that 1 − L(α) is a projection operator, i.e.
(1− L(α))2 = 1− L(α), we have

(1− L(α)) |ℓα〉 = (1− L(α)) |gα〉 . (18)

Therefore, using Eq. (17),

|g′α〉 = L(α) |gα〉 . (19)

i.e. the gradient is explicitly localized. This yields the
following result for the gradient:

|g′α〉 =
∑

β,ρ

Kαρ(S1/2) β
ρ

[
L(α)HKS

∣∣∣φ̃β
〉

−
∑

σ

〈
φ̃σ

∣∣∣HKS

∣∣∣ φ̃ρ
〉
L(α)

∣∣∣φ̃σ
〉]

. (20)

Here the localized gradient is expressed in terms

of the orthogonalized support functions
∣∣∣φ̃α
〉

=
∑

β(S
−1/2) β

α |φβ〉. Requiring the support functions to
be orthogonal i.e. Sαβ = δαβ therefore further simplifies
the evaluation of the gradient as it no longer becomes
necessary to calculate S−1 or S1/2. Moreover, it avoids
the need for distinguishing between covariant and con-
travariant indices36.

B. Localization of the Hamiltonian application

As shown in Ref. 8, the Hamiltonian operator in a
Daubechies wavelets basis set is defined by a set of convo-
lution operations, combined with the application of non-
local pseudopotential projectors. The nature of these
operations is such that HKS |φβ〉 will have a greater ex-
tent than |φβ〉. We therefore define a second localization

operator, L′(β), with a corresponding cutoff radius R′
cut,

such that R′
cut is equal to Rcut plus half of the convolu-

tion filter length times the grid spacing, which in our case
corresponds to an additional eight grid points. When ap-
plying the Hamiltonian, we impose

HKS |φβ〉 = L
′(β)HKSL

(β)|φβ〉 . (21)

For both the convolution operations and the nonlo-
cal pseudopotential applications, this procedure guaran-
tees that the Hamiltonian application is exact within
the localization region of L(β). However, the values of
HKSL

(β)|φβ〉 are approximated outside this region due
to the semilocal nature of the convolutions and the pseu-
dopotential projectors. This impacts the evaluation of
the Hamiltonian matrixHαβ for all elements whose local-
ization regions do not coincide, and thus also affects the
gradient |gα〉. Nonetheless, we have verified that further
enlargement of R′

cut is not needed as it has negligible im-
pact on the accuracy, while adding additional overheads,
see Sec.VI.
Apart from these technical details, most of the basic

operations are identical to their implementation in the
standard BigDFT code8 and are therefore not repeated
here. The only difference is that these operations are now
done only in the localization regions (corresponding to
either L(β) or L′(β)) and not in the entire computational
volume.

IV. SELF-CONSISTENT CYCLE

A. Support function optimization

As an initial guess for the support functions we use
atomic orbitals, which are generated by solving the
atomic Schrödinger equation and therefore possess long
tails which need to be truncated at the borders of the
localization regions. If the values at the borders are not
negligible, the resulting kink will cause the kinetic energy
to become very large due to the definition of the Lapla-
cian operator in a wavelet basis set, and so to assure sta-
bility during the optimization procedure, the localization
regions would need to be further enlarged. To overcome
this problem, even for small localization regions, it is ad-
vantageous to decrease the extent of the atomic orbitals
before the initial truncation by adding a confining quar-
tic potential centered on each atom, aα(r−Rα)

4, to the
atomic Schrödinger equation.
For the first few iterations of the outer loop (Fig. 1)

we maintain the quartic confining potential of the atomic
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input guess. This implies that the total Hamiltonian be-
comes dependent on the support function, Hα = HKS +
aα(r − Rα)

4, and we can no longer minimize the band
structure energy (Eq. (6)) to obtain the support func-
tions. Instead, we choose to minimize the functional

min
φα

∑

α

〈φα | Hα |φα〉 , (22)

while applying both orthogonality and localization con-
straints on the support functions, as discussed in Sec-
tion IIIA.
Apart from the improved localization, the use of the

confining potential has yet another advantage. The band
structure energy (Eq. (6)) is invariant under unitary
transformations among the support functions if there are
no localization constraints. This corresponds to some
zero eigenvalues in the Hessian characterizing the op-
timization of the support functions. The introduction
of a localization constraint violates this invariance and
leads to small but non-zero eigenvalues. The condition
number, defined as the ratio of the largest and small-
est (nonzero) eigenvalue of the Hessian, can thus become
very large, potentially turning the optimization into a
strongly ill-conditioned problem. On the other hand, if
the unitary invariance is heavily violated in Eq. (22) by
the introduction of a strong localization potential, the
small eigenvalues grow and the condition number im-
proves as a consequence.
After a few iterations of the outer loop, the support

functions are sufficiently localized to continue the opti-
mization without a confining potential, i.e. by minimizing
the band structure energy. This procedure will lead to
highly accurate support functions while still preserving
locality. As an alternative it is also possible to define
a so-called “hybrid mode” which combines the two cate-
gories of support function optimization and thus provides
a smoother transition between the two. In this case the
target function is given by

Ωhy =
∑

α

Kαα 〈φα|Hα|φα〉+
∑

β 6=α

Kαβ 〈φα|HKS |φβ〉 .

(23)
In the beginning a strong confinement is used, making
this expression similar to the functional of Eq. (22); how-
ever the confining potential is reduced throughout the
calculation so that towards the end the strength of the
confinement is negligible and Eq. (23) reverts to the full
energy expression. A prescription for reducing the con-
finement is presented in Appendix A.

1. Orthogonalization

The Lagrange multiplier formalism conserves the or-
thogonormality of the adaptively-contracted basis only
to first order. An additional explicit orthogonalization
has to be performed after each update of the adaptively-
contracted basis to restore exact orthogonality. This is

done using the Löwdin procedure. The calculation of
S−1/2, which is required in this context, can pose a bot-
tleneck. However, as our basis functions are close to or-
thonormality, the exact calculation can safely be replaced
by a first order Taylor approximation. Numerical tests
have shown that the error of this approximation is of the
same order of magnitude as the inevitable deviation from
exact orthonormality which is inherent to our set of sup-
port functions due to the strictly enforced locality; conse-
quently the slight non-orthonormality of the adaptively-
contracted basis does not significantly increase by the use
of the Taylor approximation.
It is important to note that the support functions will

only be nearly orthogonal rather than exactly orthog-
onal, as exact orthogonality is in general not possible
for functions exhibiting compact support in a discretized
space. This near-orthogonality is in contrast with most
other minimal basis implementations which use fully non-
orthogonal support functions24,25. The asymptotic decay
behavior of the orthogonal and non-orthogonal support
functions is identical. However the prefactor differs and
leads to a better localization of the non-orthogonal func-
tions37. However, in practice, we have found that the
introduction of the orthogonality constraint does not sig-
nificantly increase the size required for the localization
regions, provided that a sufficiently strong confining po-
tential is applied to localize the support functions at the
start of the calculation.

In order to counteract the small deviations from idem-
potency caused by the changing overlap matrix, we purify
the density kernel during the support function optimiza-
tion either by directly orthonormalizing the expansion
coefficients of the KS orbitals or by using the McWeeny
purification transformation.

2. Gradient and preconditioning

The optimization is done via a direct minimization
scheme or with direct inversion of the iterative subspace
(DIIS)38, both combined with an efficient precondition-
ing scheme. The derivation of the gradient of the target
function Ω with respect to the support functions involves
some subtleties for the trace and hybrid modes since in
these cases the Hamiltonian depends explicitly on the
support function, leading to an asymmetry of the La-

grange multiplier matrix Λαβ =
〈
φα

∣∣∣
∑

γ Sβγ
δΩ

δ〈φγ |

〉
. In

order to correctly derive the gradient expression we follow
the same guidelines as Ref. 39; assuming nearly orthog-
onal orbitals the final result is given by

|gα〉 =
∑

β

Sαβ
δΩ

δ 〈φβ |
−

1

2

∑

β

[
S−1

(
Λ+ΛT

)]
αβ
|φβ〉 .(24)

This is a generalization of the ordinary expression and
thus also valid if the Hamiltonian does not explicitly de-
pend on the support function, i.e. for the energy mode.
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As discussed in Section IIIA the gradient is suitably lo-
calized once derived, i.e. |gα〉 ← L

(α)|gα〉.
To precondition the gradient |gα〉 we use the standard

kinetic preconditioning scheme8. To ensure that the pre-
conditioning does not negatively impact the localization
of the gradient, we have found that it is important to
add an extra term to account for the confining potential
if present. In this case, the expression becomes

(−
1

2
∇2 + aα(r−Rα)

4 − εα) |g
prec
α 〉 = − |gα〉 , (25)

where εα is an approximate value of Λαα. This also has
the effect of improving the convergence. The inclusion
of the confining potential adds only a small overhead as
it can be evaluated via convolutions in the same manner
as the kinetic energy. Furthermore, the preconditioning
equations do not need to be solved with high accuracy,
only approximately.

B. Density kernel optimization

For the optimization of the density kernel we have im-
plemented three schemes: diagonalization, direct min-
imization and the Fermi operator expansion method
(FOE)40,41. Once the kernel has been updated, we recal-
culate the charge density via Eq (4); the new density is
then used to update the potential, with an optional step
wherein the density is mixed with the previous one in or-
der to improve convergence. This procedure is repeated
until the kernel is converged; in practice, we consider this
convergence to have been reached once the mean differ-
ence of the density of two consecutive iterations is below
a given threshold, i.e. ∆ρ < c.
The direct diagonalization method consists of finding

the solution of the generalized eigenproblem for a given
Hamiltonian and overlap matrix. Its implementation
therefore relies straightforwardly on linear algebra solvers
and will not be detailed here.
In the direct minimization approach the band-

structure energy is minimized subject to the orthogo-
nality of the support functions. To this end, we ex-
press the gradient of the Kohn-Sham orbitals, |gi〉 =
HKS |Ψi〉−

∑
j Λij |Ψj〉, in terms of the support functions,

i.e. |gi〉 =
∑

α d
α
i |φα〉. The d

α
i are obtained by solving

∑

α

Sβαd
α
i =

∑

α

Hβαc
α
i −

∑

j

∑

α

Sβαc
α
j Λji,

Λji =
∑

γ,δ

c
γ∗
j cδiHγδ.

(26)

The coefficients are optimized using this gradient via
steepest descents or DIIS. Once the gradient has con-
verged to the required threshold, the density kernel is
calculated from the coefficients and occupancies.
In the Fermi operator expansion method, the density

matrix may be defined as a function of the Hamiltonian
as F = f(H), where f is the Fermi function. In terms of

the support functions, this corresponds to an expression
for the density kernel in terms of the Hamiltonian matrix,
i.e. K = f(H). The central idea of the FOE23,40,41 is to
find an expression for f(H) which can be efficiently eval-
uated numerically. One particularly simple possibility is
a polynomial expansion; for numerical stability we use
Chebyshev polynomials42. As will be shown in detail in
Appendix B, the density kernel can be constructed using
only matrix vector multiplications thanks to the recur-
sion formulae for the Chebyshev matrix polynomials.

1. Suitability of the methods

All three methods for calculating the density kernel
(direct diagonalization, direct minimization and FOE)
yield the same final result, thus the main differences lie
in their performance, where one of the most important
points is the performance of the linear algebra. Due to
the localized nature of the support functions, the overlap,
Hamiltonian and density kernel matrices are in general
sparse, with the level and pattern of sparsity depending
on the localization radii of the support functions and the
dimensionality of the system in question. We can take
advantage of this sparsity by storing and using these ma-
trices in compressed form and indeed this is necessary to
achieve a fully linear scaling algorithm.
For diagonalization, exploiting the sparsity is very hard

due to the lack of efficient parallel solvers for sparse ma-
trices. The method therefore performs badly for large
systems due to its cubic scaling, but thanks to the small
prefactor it can still be useful for smaller systems con-
sisting of a few hundred atoms.
For direct minimization the situation is better, since

both the solution of the linear system of Eq. (26) and the
orthonormalization can be approximated using Taylor
expansions for S−1 and S−1/2, respectively. It can also
be easily parallelized, so that the cubic scaling terms only
become problematic for systems containing more than a
few thousand atoms, as demonstrated in section VII (see
Fig. 7). Indeed, for moderate system sizes, the extra
overhead associated with the manipulation of sparse ma-
trices makes dense matrix algebra cheaper, and so many
physically interesting systems are already considerably
accelerated.
Even though the direct minimization method does not

scale linearly in its current implementation, there are
some situations where its use is advantageous. For ex-
ample, the unoccupied states are generally not well rep-
resented by the adaptively-contracted basis set follow-
ing the optimization procedure, and for cases where we
have only the density kernel and not the coefficients, it
becomes necessary to use another approach to calculate
them, such as optimizing a second set of minimal basis
functions43, which can be expensive. However, as with
the diagonalization approach, the ability to work directly
with the coefficients makes it possible to optimize the
support functions and coefficients to accurately represent
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a few states above the Fermi level at the same time as
the occupied states, without significantly impacting the
cost.
The FOE approach leads to linear scaling if the spar-

sity of the Hamiltonian is exploited and if the build up
of the density matrix is done within localization regions.
These localization regions do not need to be identical to
the localization regions employed for the calculation of
the adaptively-contracted basis set – in general they will
actually be larger. The final result turns out to be rel-
atively insensitive to the choice of size for the density
matrix localization regions, above a sensible minimum
value. By exploiting this sparsity, we can access system
sizes of around ten thousand atoms with a moderate use
of parallel resources.

C. Parallelization

Like standard BigDFT we have a multi-level
MPI/OpenMP parallelization scheme44. The details of
the MPI parallelization are presented in Appendix D. In
Fig. 4 we show the effective speedup as a function of the
number of cores for a large water droplet, keeping the
number of OpenMP threads at four. We measured the
parallelization up to 3840 cores, by taking as a reference
a 160 core run. As can be seen, the effective speedup
reaches about 92% of the ideal value at 480 cores, de-
creasing to 62% for 3840 cores. Fitting the data to Am-
dahl’s law45 shows that at least 97% of the code has been
parallelized; the true value is higher as the times shown
include the communications and are relative to 160 cores
rather than a serial run. Fig. 4 also shows a breakdown of
the total calculation time into different categories, where
we see that the communications start to become limiting
for the highest number of cores, demonstrating that this
is at the upper bound which is appropriate for this sys-
tem size. For a larger system, this limit will of course be
higher.

V. CALCULATION OF IONIC FORCES

In a self-consistent KS calculation (i.e. when the charge
density is derived from the numerical set of wavefunc-
tions), the forces acting on atom a are given by the nega-
tive gradient of the band structure energy with respect to
the atomic positions Ra. The Hellmann-Feynman force,
given by the expression

F(HF )
a = −

∑

i

fi

〈
Ψi

∣∣∣∣
∂H

∂Ra

∣∣∣∣Ψi

〉
, (27)

involves only the functional derivative of the Hamiltonian
operator. This term is evaluated numerically in the com-
putational setup used to express the ground state energy.
As explained in more detail in Appendix C 1, with the cu-
bic version of BigDFT, only the Hellmann-Feynman term
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contributes to the forces, as the remaining part tends to
zero in the limit of small grid spacings.
However, when the KS orbitals are expressed in terms

of the support functions, there is an additional contribu-
tion which is not captured by the computational setup.
As demonstrated in Appendix C 2, it is given by

F(P )
a = −2

∑

α,β

Re

(
Kαβ

〈
χβ

∣∣∣∣
∂L(α)

∂Ra

∣∣∣∣φα
〉)

, (28)

where

|χα〉 = HKS |φα〉 −
∑

j

∑

ρ,σ

c
ρ
jεjc

σ∗
j Sσα |φρ〉 (29)

is the residual vector of the support function |φα〉, which
is related to the support function gradient |gα〉 (see
Eq. (15)). This term can be considered as the equivalent
of a Pulay contribution to the ionic forces, arising from
the explicit dependence of the localization operators on
the atomic positions.

The vector ∂L(α)

∂Ra
|φα〉 only depends on the value of the

support function on the borders of the localization re-
gions (Eq. (C12)). Therefore, if the scalar product be-
tween the residues |χβ〉 and the values of the support
functions |φα〉 at the boundaries of their localization re-
gions is smaller than the norm of the residue itself (quan-
tifying the accuracy of the results), the Pulay term can
be safely neglected.
As mentioned in Section IVA, the Laplacian operator

in the wavelet basis causes the kinetic energy to be high
if the values at the edges are non-negligible. Such a sit-
uation is therefore penalized by the energy minimization
and so the values at the borders are guaranteed to remain
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low. Indeed, we have seen excellent agreement between
the Hellmann-Feynman term only and the forces calcu-
lated using standard BigDFT, as will be demonstrated
in sections VI and VIII A.
The Hellmann-Feynman force is thus the only relevant

term even in the adaptively-contracted basis approach
and is given by

F(HF )
a = −

∑

α,β

Kαβ

〈
φα

∣∣∣∣
∂H

∂Ra

∣∣∣∣φβ
〉
. (30)

It is identical to the implementation in standard
BigDFT8 and so the different terms are not repeated
here. The only difference is that instead of applying
the operator to the wavefunctions, we now apply it to
all overlapping support functions. This can be done effi-
ciently since each support function overlaps with only a
few neighbors.

VI. ACCURACY

We have applied our minimal basis approach to a num-
ber of systems, depicted in Fig. 5, in order to demonstrate
both its accuracy and its applicability. All calculations
have been done using the local density approximation
(LDA) exchange-correlation functional46 and HGH pseu-
dopotentials29. However it is worth noting that the sole
usage of LDA does not imply a general restriction and
other functionals can be used as well; as an example, a
PBE47 calculation is presented for one system. In ad-
dition, we have used free boundary conditions, avoiding
the need for the supercell approximation. The values of
the wavelet basis parameters for the different systems, as
well as the localization radii, were selected in order to
achieve accuracies better than 1meV/atom. This corre-
sponded to values between 0.13 Å and 0.20 Å for h, 5.0
and 7.0 for λc and 7.0 and 8.0 for λf . Unless otherwise
stated, we have used the direct minimization scheme for
the density kernel optimization. For hydrogen atoms one
basis function was used per atom, whereas for all other
elements four basis functions were used per atom, except
where otherwise stated.

A. Benchmark systems

We demonstrate excellent agreement with the tradi-
tional cubic scaling method for both energy and forces
– of the order of 1meV/atom for the energy and a
few meV/Å for the forces, as shown in Tab. I. We
also demonstrate systematic convergence of the total en-
ergy and forces with respect to localization radius for a
molecule of C60, where the largest localization regions
are close to the total system size, as depicted in Fig. 6.
For all these systems the level of accuracy achieved for
the forces using the Hellmann-Feynman term only is of
the same order as that of the cubic code.

B. Silicon defect energy

In order to demonstrate the accuracy of our method
for a practical application we calculated the energy of a
vacancy defect in a hydrogen terminated silicon cluster
containing 291 atoms, shown in Fig. 5(f). As shown in
Tab. II, the difference in defect energy between the cu-
bic reference calculation and the linear version is 129meV
using 4 support functions per Si atom and 1 support func-
tion per hydrogen atom. Even more accurate results can
be achieved by increasing the number of support func-
tions per Si atom to 9, which reduces the error to 12meV.
Increasing the localization radii does not further improve
the accuracy as the result is already within the noise
level. To achieve these results, support functions were
optimized using the hybrid mode and the density kernel
was optimized using the FOE approach with a cutoff of
7.94 Å for the kernel construction.

C. Consistency of energies and forces

Following the discussion in Section V, we have calcu-
lated the average value of the support functions on the
borders of their localization regions for various systems
and found this to be at least three orders of magnitude
smaller than the norm of the support function residue
(defined in Eq. (C1)). This is in line with our expec-
tations, as discussed in Section V, and implies that the
Pulay terms should be negligible compared to the error
introduced to the Hellmann-Feynman term due to the
localization constraint. Indeed, this agrees with the cal-
culated forces for the systems presented thus far. To
further verify that the Pulay term can be neglected and
to quantify the different sources of errors, we have also
checked that the calculated forces are consistent with the
energy, i.e. that they correspond to its negative deriva-
tive. To this end, initial and final configurations R(a)

and R(b) of a given system were chosen, where R rep-
resents the atomic positions. Small steps ∆R were then
taken between R(a) to R(b). If the forces F are correctly
evaluated we should have

∆E =

∫ b

a

F(r) · dr ≈

b∑

µ=a

F(Rµ) ·∆Rµ, (31)

where µ labels the intermediate steps between configu-
rations R(a) and R(b). This approximation can be com-
pared with the exact value obtained by directly calculat-
ing the energy differences, i.e. E(R(b))−E(R(a)). These
two values should agree with each other up to the noise
level of the calculation.
To analyze the different terms contributing to the noise

in the forces, we use a combination of the hybrid and
FOE methods with five progressive setups which give an
estimate of the magnitude of the various error sources:

1. Using the cubic scaling scheme where all orbitals
can extend over the full simulation cell.
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(a)Cinchonidine (C19H22N2O),
Rcut =5.29Å

(b)Boron cluster48, Rcut =5.82Å (c)Alkane,
Rcut =5.29Å

(d)Water droplet, Rcut =5.29Å

(e)C60 (f)Silicon cluster, Rcut =4.76Å (g)SiC49, Rcut =5.82Å (h)Ladder
polythiophene,
Rcut =5.29Å

FIG. 5. The different systems studied, where gray denotes carbon, white hydrogen, red oxygen, gold nitrogen, bronze boron,
green silicon and blue sulfur. The values used for the support function localization radii are also given.

Num. atoms
Energy (eV) Forces (eV/Å)

Min. Basis Cubic (Min. - Cub.)/atom Min. Basis Cubic Av. (Min. - Cub.)

Cinchonidine LDA 44 −4.273 · 103 −4.273 · 103 2.0 · 10−3 2.734 · 10−2 2.772 · 10−2 4.3 · 10−3

Cinchonidine PBE 44 −4.274 · 103 −4.274 · 103 3.0 · 10−4 2.581 · 10−2 2.610 · 10−2 2.2 · 10−3

Boron cluster 80 −6.141 · 103 −6.141 · 103 2.4 · 10−3 1.305 · 10−2 1.316 · 10−2 4.2 · 10−3

Alkane 257 −1.592 · 104 −1.592 · 104 3.7 · 10−4 3.760 · 10−2 3.767 · 10−2 1.0 · 10−3

Water 450 −7.011 · 104 −7.012 · 104 1.7 · 10−3 3.730 · 10−2 3.730 · 10−2 2.5 · 10−3

TABLE I. Energy and force differences between the minimal basis approach and the standard cubic version of the code. For
the forces, the root mean squared force is given for each approach, as well as the average difference between each component.

2. Using the minimal basis approach but without lo-
calization constraints or confining potential.

3. Applying a confining potential but no localization
constraints.

4. Using a finite localization radius of 7.94 Å for the
density kernel, but not for the support functions.

5. Applying in addition strong localization radii of
4.76 Å to the support functions.

This test was done for a 92 atom alkane – despite the rel-
atively small system size the introduction of finite cutoff
radii for the support functions and the density kernel

construction has a strong effect since for chain-like struc-
tures the volume of the localization region is only a small
fraction of the total computational volume. The results
are shown in Tab. III, for a step size of ∆Rµ = 0.003 Å.
As expected, without the application of the localization
constraint, the errors for the minimal basis calculations
are of the same order of magnitude as the reference cu-
bic calculation. This is also the case when a finite cutoff
radius for the construction of the density kernel is in-
troduced. Once a finite localization is imposed on the
support functions the discrepancy between the energy
difference and the force integral increases by an order of
magnitude, however it remains small, agreeing with our
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pristine vacancy ∆ ∆-∆cubic

eV eV eV meV

cubic −20674.223 −20563.056 111.167 –

4/1 −20667.556 −20556.518 111.038 129

9/1 −20672.856 −20561.701 111.155 12

TABLE II. Total energies and energy differences for a silicon
cluster (Fig. 5(f)) with and without a vacancy defect. The
first column shows the number of support functions per Si and
H atom, respectively, and the last column shows the difference
in defect energy between the cubic and linear versions.

previous observations about the Pulay forces for large
enough localization radii.
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cu
to
ff

∆E
∫
F(r) · dr diff.

1 ✗ ✗ ✗ ✗ 5.666961 5.667190 −2.3 · 10−4

2 ✓ ✗ ✗ ✗ 5.666966 5.666999 −3.3 · 10−5

3 ✓ ✓ ✗ ✗ 5.666958 5.667024 −6.5 · 10−5

4 ✓ ✓ ✓ ✗ 5.667239 5.667024 2.1 · 10−4

5 ✓ ✓ ✓ ✓ 5.669992 5.673043 −3.1 · 10−3

TABLE III. Force calculations for the five setups described in
the text, with all quantities given in eV.

VII. SCALING AND CROSSOVER POINT

We have applied the minimal basis method to alka-
nes, applying both the direct minimization and FOE ap-
proaches for the kernel optimization. The time taken per
iteration is compared with the traditional cubic-scaling
version in Fig. 7. The number of iterations required to
reach convergence is similar for the cubic and minimal
basis approaches and is approximately constant across
system sizes, so that the total time taken shows similar
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FIG. 7. Comparison between the time taken per iteration
and memory usage for the cubic scaling and minimal basis
approaches using both direct minimization (Dmin) and FOE
for increasing length alkanes, where the time is for the wave-
function optimization, neglecting the input guess. The coeffi-
cients are shown for the corresponding cubic polynomials. A
fixed number of 301 MPI tasks and 8 OpenMP threads was
used.

behaviour. The results clearly demonstrate the improved
scaling of the method, with a crossover point for the to-
tal time at around 150 atoms. This will of course be
system dependent – the chain like nature of the alkanes
makes them a particularly favorable system for the min-
imal basis approach. We also plot cubic polynomials for
the timing data; whilst the cubic scaling approach only
has a very small cubic term, both this and the quadratic
term are noticeably reduced for both the FOE and di-
rect minimization approaches. Indeed, the FOE method
is predominantly linear scaling, compared to direct min-
imization which has larger quadratic and cubic terms,
mainly due to the linear algebra, as expected.

The minimal basis approach also gives considerable
savings in memory; for the above example the memory
requirements for the cubic version still prohibit calcula-
tions on systems bigger than around 2000 atoms for the
chosen number of processors, whereas for the minimal ba-
sis method the memory requirements allow calculations
of up to 4000 atoms using direct minimization, and nearly
8000 atoms with FOE.

To take full advantage of the improvements made to
BigDFT, it is not enough for the time taken per iter-
ation to scale favorably with respect to system size, it
is also necessary for the number of iterations needed
to reach convergence not to increase with system size.
We have demonstrated such behavior for increasing sized
randomly generated non-equilibrium water droplets, as
shown in Fig. 8. The number of iterations required to
reach a good level of agreement with the cubic scaling
version of the code remains approximately constant, with
the fluctuations due to the random noise in the bond
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lengths of the water molecules. Furthermore, the energy
converges rapidly to a value very close to that obtained
with the cubic code, as illustrated by the upper panel.
We have also observed similar convergence behavior for
other systems, including alkanes, as mentioned above.

VIII. FLEXIBILITY OF THE MINIMAL BASIS

FORMALISM

A. Geometry optimization

As a further test of the quality of the forces and as
a demonstration of the flexibility of the minimal basis
formalism, we have performed a geometry optimization
for a segment of a SiC nanotube containing 288 atoms,
depicted in Fig. 5(g). Here we can take advantage of
the minimal basis formalism by reusing the optimized
support functions from the previous geometry step as
an improved input guess, moving them with the atoms
using an interpolation scheme to account for atomic dis-
placements which are not multiples of the grid spacing h.
This has the effect of reducing the number of iterations
required to converge the support functions for each new
geometry. In fact, for cases where the atoms have only
moved a small amount, they will hardly need optimizing
at all and so substantial savings can be made. A similar
procedure also exists for the cubic version, but the mini-
mal basis approach can profit much more because of the
direct relation between the support function centers and
the atomic positions.
We compared the convergence behavior and time taken

for the minimal basis approach both with and without
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FIG. 9. Geometry optimization for a segment of a SiC nan-
otube for the cubic and minimal basis approaches where the
support functions are regenerated from atomic orbitals at each
geometry step (“reset”) and where they are reformatted for
reuse at the next iteration (“reformat”). The time taken for
each step, cumulative time, force convergence and average
distance from the final structure optimized using standard
BigDFT are plotted for each step of the geometry optimiza-
tion.

reusing the support functions at each geometry step with
that for the standard cubic approach, for which the re-
sults are shown in Fig. 9. It is clear that the Hellmann-
Feynman forces are sufficiently accurate to optimize the
structure to the required level – in this case forces of
below 10−2 eV/Å are readily achieved. For this system
size we are below the crossover point, such that when
the support functions are reset at each geometry step
the time taken per step is greater than that for the cu-
bic approach. However, the reuse of support functions
results in a significant reduction in the number of steps
required to fully converge the support functions, and so
the total time is less than that required for the cubic
approach. This means that the crossover point will be
reduced for geometry optimizations or molecular dynam-
ics calculations, opening up further possibilities for the
highly accurate study of dynamics of large systems.

B. Charged systems

As previously mentioned, the ability to use free bound-
ary conditions is essential for charged systems. This has
enabled us to perform calculations of isolated segments
of ladder polythiophene (LPT) (Fig. 5(h)), initially in a
neutral state and then adding a charge of plus or minus
two electrons. The support functions from the neutral
case are also well suited to the charged system so that
only kernel optimizations are required, which can reduce
the computational cost by an order of magnitude.
In Tab. IV we compare the agreement between the min-

imal basis approach and the standard cubic approach for
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Q ∆EQ |∆(EQ − E0)|

0 opt. 176 –

−2
opt. 147 28

unopt. 292 117

+2
opt. 128 47

unopt. 200 24

TABLE IV. Energy differences between the standard cubic
version and the minimal basis approach for absolute ener-
gies (∆EQ) and energy differences with the neutral system
(|∆(EQ − E0)|) for 63 atom segments of LPT with a net
charge Q. Results are shown both for fully optimized sup-
port functions (“opt”) and for support functions reused from
the neutral calculation (“unopt”). All results are in meV.

a system containing 63 atoms. We demonstrate an agree-
ment of the order of 100meV for the energy differences
for both the fully optimized set of support functions and
the reuse of the support functions from the neutral sys-
tem. For the negatively charged calculations we have also
confirmed that this level of accuracy is maintained up to
300 atoms, beyond which size the cost of calculations
with the cubic version of BigDFT increases significantly.
In order to converge the results obtained with the min-

imal basis to a good level of accuracy, we used 9 support
functions for carbon and sulfur and 1 per hydrogen. For
charged systems we have found that the direct minimiza-
tion method is more stable, as it allows us to update the
coefficients in smaller steps before updating the kernel
and therefore density, rather than fully converging them
before each update.
We expect such support function reuse to be generally

applicable for systems where the addition of a charge
only results in a perturbation of the electronic structure.
However it may be necessary to optimize a few unoccu-
pied states (using direct minimization or diagonalization)
in order to ensure that the adaptively-contracted basis is
sufficiently accurate for negatively charged systems.

IX. CONCLUSION

We have presented a self-consistent minimal basis ap-
proach within BigDFT which leads to a reduced scaling
behavior with system size and allows the treatment of
larger systems than can be treated with the cubic ver-
sion; for very large systems linear scaling is clearly visible.
The use of a small set of nearly orthogonal adaptively-
contracted basis functions which are optimized in situ

in the underlying wavelet basis set gives rise to sparse
matrices of relatively small size. For the optimization of
these so-called support functions we use a confining po-
tential which on the one hand helps to keep the support
functions strictly localized, and on the other hand helps
to alleviate the notorious ill-conditioning which is typical
of linear scaling approaches.
The standard cubic scaling version of BigDFT has been

previously demonstrated to give highly accurate results
and so we use this as a standard of comparison for our
method. We have demonstrated for a number of different
systems excellent agreement with the cubic version for
both energy and forces. In particular, we have demon-
strated that it is not necessary to include Pulay-like cor-
rection terms to the atomic forces, thanks to the nature of
the Laplacian operator in the wavelet basis which ensures
the support functions remain negligible on the borders
of the localization regions. In addition, we have shown
consistent convergence behavior across a range of system
sizes. From the viewpoint of scaling with the number of
atoms we have demonstrated linear scaling for the FOE
method where the linear algebra has been written to ex-
ploit the sparsity of the matrices.
Finally, we have highlighted some of the advantages of

using localized support functions expressed in a wavelet
basis set. These include the ability to further accelerate
geometry optimizations by reusing the support functions
from the previous geometry, and the possibility of achiev-
ing a good level of accuracy for a charged calculation by
reusing the support functions from a neutral calculation.
By directly working in the basis of the support func-

tions, we can therefore reduce the number of degrees of
freedom needed to express the KS operators for a tar-
geted accuracy. Aside from reducing the computational
overhead, this flexible approach paves the way for fu-
ture developments, where the adaptively-contracted basis
functions can be reused in other situations, including for
example constrained DFT calculations of large systems.
Work is ongoing in this direction.
The authors would like to acknowledge funding

from the European project MMM@HPC (RI-261594),
the CEA-NANOSCIENCE BigPOL project, the ANR
projects SAMSON (ANR-AA08-COSI-015) and NEW-
CASTLE, and the Swiss CSCS grants s142 and h01.
CPU time and assistance were provided by CSCS, IDRIS,
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Appendix A: Prescription for reducing the

confinement

To derive a prescription for reducing the confinement,
it is assumed that the change in the target function be-
tween successive iterations of the minimization procedure
can be approximated to first order by

∆Ω′
(n) =

∑

α

〈gα(n)|∆φ
α
(n)〉 , (A1)

where |∆φα(n)〉 is the change in support function between

iterations n and n+1, i.e. |∆φα(n)〉 = |φ
α
(n+1)〉−|φ

α
(n)〉, and

|gα(n)〉 is the gradient of the target function with respect to

the support function at iteration n. Due to the influence
of the confinement and the localization regions, the gra-
dient of the support functions and thus ∆Ω′

(n) will not go
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down to zero. However, the actual change in the target
function, ∆Ω(n), will at some point go to zero, meaning
that further optimization becomes impossible for the lo-
calization region and confining potential currently used.
In this case, the only way to further minimize the target
function is to decrease the confining potential. Therefore
at each step of the minimization the ratio between the
actual and estimated decreases in the target function is
determined:

κ =
∆Ω(n)

∆Ω′
(n)

. (A2)

This value is then used to update the confinement pref-
actor, aα, at the start of the following support function
optimization loop, via

anewα = κaoldα . (A3)

If κ is of the order of one, this implies there is still some
scope for optimizing the support functions using the cur-
rent confining potential and it should not be updated. If,
on the other hand, κ is much smaller, it will hardly be
possible to further improve the support functions and so
the magnitude of the confining potential should be de-
creased. In this way one gets a smooth transformation
from the hybrid expression to the energy expression.

Appendix B: Fermi operator expansion

In the FOE method the density kernel is given as a
sum of Chebyshev polynomials. Since these polynomials
are only defined in the interval [−1, 1], it is necessary to
shift and scale the Hamiltonian such that its eigenvalue
spectrum lies within this interval. If εmin and εmax are
the smallest and largest eigenvalues that would result
from diagonalizing the Hamiltonian matrix according to
Hci = εiSci, then the scaled Hamiltonian, H̃, has to be
built using

H̃ = σ(H− τS), (B1)

with

σ =
2

εmax − εmin
, τ =

εmin + εmax

2
. (B2)

Now the density kernel can be calculated according to

K′ ≈ p(H̃′) =
c0

2
I+

npl∑

i=1

ciT
i(H̃′) (B3)

with

H̃′ = S−1/2H̃S−1/2, (B4)

where I is the identity matrix, Ti the Chebyshev polyno-
mial of order i, S the support function overlap matrix and
S−1/2 is calculated using a first order Taylor expansion.

To determine the expansion coefficients ci, one has to
recall that the density matrix of Eq. (5) is a projection
operator onto the occupied subspace of the KS orbitals:

〈ψi|F |ψj〉 = f(εj)δij . (B5)

Since F and H have the same eigenfunctions, one can
express the polynomial p(H) in the same way, leading to

〈ψi|p(H)|ψj〉 = p(εj)δij (B6)

with

p(ε) =
c0

2
+

npl∑

i=1

ciT
i(ε). (B7)

By comparing Eqs. (B5) and (B6) it becomes clear that
the polynomial expansion p(ε) has to approximate the
Fermi function f(ε) in the interval [−1, 1]. Thus the coef-
ficients ci are simply given by the expansion of the Fermi
function in terms of the Chebyshev polynomials. The
time for this step is negligible compared to the other op-
erations related to the FOE. However, in practice it turns
out that it is advantageous to replace the Fermi function
by

f(ε) =
1

2

[
1− erf

(
ε− µ

∆ε

)]
, (B8)

since it approaches the limits 0 and 1 faster as one goes
away from the chemical potential. ∆ε is typically a frac-
tion of the band gap.
The last step is to evaluate the Chebyshev polynomials

and to build the density kernel. If the lth column of the
Chebyshev matrix T is denoted by tl, then these vectors
fulfill the recursion relation

t0l = el,

t1l = H̃′el,

t
j+1
l = 2H̃′t

j
l − t

j−1
l ,

(B9)

where el is the lth column of the identity matrix. The lth
column of the density kernel, denoted by kl, is then given
by the linear combination of all the columns tl according
to Eq. (B3), i.e.

k′
l =

c0

2
t0l +

npl∑

i=1

cit
i
l . (B10)

This demonstrates that the density kernel can be con-
structed using only matrix vector multiplications.
Since the correct value of the Fermi energy is initially

unknown, this procedure has to be repeated until the
correct value has been found, so that Tr(K′) is equal to
the number of electrons in the system. Finally the kernel
K is given by S−1/2K′S−1/2 and the band-structure en-
ergy can then be calculated by reversing the scaling and
shifting operations:

EBS =
Tr(KH̃)

σ
+ τTr(KS). (B11)
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Appendix C: Pulay forces

1. The traditional cubic approach

Numerically, the set of |Ψi〉 is expressed in a finite ba-
sis set. This means that the action of HKS can in prin-
ciple lie outside the span of the |Ψi〉. Let us suppose
that the KS Hamiltonian and orbitals are expressed in
a basis set which is complete enough to describe them
within a targeted accuracy ∆. For the Daubechies basis
in the traditional BigDFT approach, this happens when
the grid spacing h is such as to describe the PSP and
orbital oscillations, and the radii λc,f such as to contain
the decreasing tails of the wavefunctions. This situation
indeed corresponds to the traditional setup of a BigDFT
run. We can therefore define a residual function

|χi〉 = HKS |Ψi〉 − ǫi |Ψi〉 , (C1)

which is of course zero when the numerical KS orbital
is the exact KS orbital. By definition 〈Ψj |χi〉 = 0 ∀i, j.
The norm of this vector, once projected in the basis set
used to express |Ψi〉, is often used as a convergence crite-
rion for the ground state energy.
Even though the basis set is finite, the orthog-

onality of the KS orbitals holds exactly, implying

Re
(〈
Ψi

∣∣∣ dΨi

dRa

〉)
= 0. It is thus easy to show that the

numerical atomic forces are defined as follows:

−
dEBS

dRa
=−

∑

i

〈Ψi|
∂HKS

∂Ra
|Ψi〉

− 2
∑

i

Re

(〈
χi

∣∣∣∣
dΨi

dRa

〉)
, (C2)

where the first term of the right hand side of the above
equation is the Hellmann-Feynman contribution to the
forces. The norm of |χi〉 (Eq. (C1)) can be reduced
within the same basis set to meet the targeted accu-

racy ∆. Therefore the projection of
∣∣∣ dΨi

dRa

〉
onto the ba-

sis set used for the calculation can be safely neglected
as it is associated with the same numerical precision.
Consequently, the atomic forces can be evaluated by the
Hellmann-Feynman term only as the remaining part is
proportional to ∆.

2. The minimal basis approach

As mentioned in the main text, when the KS orbitals
are expressed in terms of the support functions, an addi-

tional Pulay-like term should in principle be taken into
account. To demonstrate this, we define – in analogy
to Eq. (C1) – the support function residue |χα〉, which
becomes, using the identity H̃ρσ =

∑
j c

ρ
jεjc

σ∗
j ,

|χα〉 = HKS |φα〉 −

(
∑

ρ,σ

|φρ〉 H̃ρσ 〈φσ|

)
|φα〉

= HKS |φα〉 −
∑

j

∑

ρ,σ

c
ρ
jεjc

σ∗
j Sσα |φρ〉 .

(C3)

Next, inserting the definition of χi (Eq. (C1)) into the
non-Hellmann-Feynman contribution of Eq. (C2) and us-

ing the relation Re
(〈
Ψi

∣∣∣ dΨi

dRa

〉)
= 0 one obtains

Fa − F(HF )
a = −2

∑

i

Re

(〈
Ψi

∣∣∣∣HKS

∣∣∣∣
dΨi

dRa

〉)
. (C4)

Expanding the KS orbitals in terms of the support func-
tions, using the relation Hαβ =

∑
j

∑
ρ,σ εjc

ρ
j c

σ∗
j SαρSσβ

and the orthonormality of the KS orbitals, we can write

Fa − F(HF )
a = −2

∑

i

∑

α,β

Re

(
cα∗i c

β
i

〈
φα

∣∣∣∣HKS

∣∣∣∣
dφβ
dRa

〉)

− 2
∑

i

∑

α,β

Re

(
cα∗i

dcβi
dRa

〈φα | HKS |φβ〉

)

= −2
∑

i

∑

α,β

Re

(
cα∗i c

β
i

〈
φα

∣∣∣∣HKS

∣∣∣∣
dφβ
dRa

〉)

− 2
∑

i

∑

β,σ

Re

(
dcβi
dRa

εic
σ∗
i Sσβ

)
.

(C5)
From the orthonormality of the KS orbitals one can de-
rive the relation

2
∑

α,β

Re

(
dcαi
dRa

c
β∗
i Sαβ

)
= −

∑

α,β

cα∗i c
β
i

dSαβ

dRa
. (C6)

Inserting this into Eq. (C5) yields

Fa − F(HF )
a = −2

∑

i

∑

α,β

Re

(
cα∗i c

β
i

〈
φα

∣∣∣∣HKS

∣∣∣∣
dφβ
dRa

〉)

+
∑

i

∑

β,σ

Re

(
c
β
i c

σ∗
i

dSσβ

dRa
εi

)
.

(C7)
Again using the KS orthonormality condition, we can
write



16

Fa − F(HF )
a = −2

∑

i

∑

α,β

Re

(
cα∗i c

β
i

〈
φα

∣∣∣∣HKS

∣∣∣∣
dφβ
dRa

〉)
+
∑

i,j

∑

α,β,ρ,σ

Re

(
cα∗i c

β
i c

σ∗
j εic

ρ
jSαρ

dSσβ

dRa

)

= −2
∑

α,β

Re

(
Kβα

〈
φα

∣∣∣∣HKS

∣∣∣∣
dφβ
dRa

〉)
+ 2

∑

j

∑

α,β,ρ,σ

Re

(
Kβαcσ∗j εjc

ρ
jSαρ

〈
φσ

∣∣∣∣
dφβ
Ra

〉)
,

(C8)

which becomes in terms of the support function residue
of Eq.(C3)

Fa − F(HF )
a = −2

∑

α,β

Re

(
Kβα

〈
χα

∣∣∣∣
dφβ
dRa

〉)
. (C9)

This result contains Eq. (C2) when no localization pro-
jectors are applied to the support function. Therefore the
only term of the forces which cannot be captured within
the localization regions is the part which is projected
outside. The extra Pulay term due to the localization
constraint is therefore

F(P )
a = −2

∑

α,β

Re

(
Kβα

〈
χα

∣∣∣∣ (1− L
(β))

∣∣∣∣
dφβ
dRa

〉)
.

(C10)
Using Eq. (12), we can show

F(P )
a = −2

∑

α,β

Re

(
Kβα

〈
χα

∣∣∣∣
∂L(β)

∂Ra

∣∣∣∣φβ
〉)

. (C11)

When the localization regions are atom-centered, the
derivative of the projector L(a) (as defined in Eq. (11))
can be evaluated analytically in the underlying basis set
and is given by

∂L(α)

∂Rβ i1,i2,i3;j1,j2,j3

= δαβδi1j1δi2j2δi3j3
R(i1,i2,i3) −Rα

Rcut

× δ(Rcut − |R(i1,i2,i3) −Rα|) .(C12)

This demonstrates that the Pulay term is only associated
with the value of the support functions at the border of
the localization regions.

Appendix D: Parallelization

It is a natural choice to divide the support functions
between MPI tasks so that each one handles only a sub-
set of support functions. For some operations these can
be treated independently but for others, such as the cal-
culation of scalar products between overlapping support
functions needed to build the overlap and Hamiltonian
matrices, communication of support functions between
MPI tasks is required. One could directly exchange in a
point-to-point fashion the parts of the support functions
which overlap with each other, so that the scalar products
can be calculated locally on each task. Although concep-
tually straightforward, this has severe drawbacks. Firstly
the amount of data being communicated is tremendous

since the support functions generally have quite a notable
overlap. This also results in a very poor ratio between
computation and communication – in the extreme case
where each task handles only one support function, each
communicated element is only used for one operation.
Secondly there can be enormous load imbalancing for free
boundary conditions as support functions in the center
of the system usally have more neighboring support func-
tions than those near the edges. Finally, the data is split
into a large number of small messages, which could result
in a large overhead due to the latency of the network.

We therefore use a different approach, which requires
a so-called “transposed” rather than “direct” arrange-
ment of data. In this layout the simulation cell is parti-
tioned among MPI tasks and the support functions are
distributed to the various tasks such that each one can
calculate a partial overlap matrix for a given region of
the cell. Each task therefore has to receive those parts of
all support functions which extend into its region. The
partial matrices are then summed to build the full over-
lap matrix using MPI Allreduce. This partitioning of the
cell is done such that the load balancing among the MPI
tasks is optimal, which in general does not correspond
to a naive uniform distribution of the simulation cell. To
determine the optimal layout a weight is assigned to each
grid point, given by m2, where m is the number of sup-
port functions touching it (if symmetry can be exploited

the weight should rather be m(m+1)
2 ); the total weight

(i.e. the sum of all partial weights) is then divided among
all MPI tasks as evenly as possible. In Fig. 10 this proce-
dure is illustrated with a toy example, where in the upper
part the support functions and their overlaps are shown
and in the lower part the resulting direct and transposed
(both naive and optimal) data layouts are given.

In addition to the better load balancing this approach
has the advantage that considerably less data has to be
communicated – since the transposed layout is just a re-
distribution of the standard layout, the total amount of
data that is communicated is equal to the total size of
all support functions, whereas in the point-to-point ap-
proach, the same data is often sent to multiple processes.
Furthermore, the communication can be done more ef-
ficiently: after some local rearrangement of the data for
each MPI task, it can be communicated with a single MPI
call (MPI Alltoallv) – in practice there are two calls since
the coarse and fine parts are handled separately. After
the data has been received some local rearrangement is
again required to reach the correct layout. These three
steps – local rearrangement, communication and further
local rearrangement – are illustrated in Fig. 11. Due
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FIG. 10. An example depicting four support functions (Ro-
man numerals) in a system consisting of four grid points (Ara-
bic numerals) [above]. The support functions are constructed
such that each extends over two grid points. The various data
layouts are also illustrated [below]: the direct layout where
each MPI task has all the data for certain support functions
[left]; the naive transposed layout where each MPI task has
all the data for some grid points [centre]; and the optimized
transposed layout which is similar to the previous case, but
with an optimal load balancing [right].
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FIG. 11. Illustration of the transposition process for the sys-
tem shown in Fig. 10. In step a, the data is rearranged locally
on each MPI task, after which it is communicated using a sin-
gle collective call (MPI Alltoallv), as shown in step b. Finally
in step c it is again rearranged locally to reach the final layout.

to the latency of the network, two MPI calls will likely
be more efficient than the very large number of small
messages that have to be sent for the point-to-point ap-
proach.

For the calculation of the charge density, which is for-
mally identical to the calculation of scalar products, a
similar approach is used. Since these two operations are
the most important ones from the viewpoint of commu-
nication and parallelization, this results in an excellent
scaling with respect to the number of cores.
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P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens.
Matter 14, 2745 (2002)

28 I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992)
29 C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B

58, 3641 (1998)
30 M. Krack, Theor. Chem. Acc. 114, 145 (2005)
31 A. Willand, Y. O. Kvashnin, L. Genovese, A. Vázquez-

Mayagoitia, A. K. Deb, A. Sadeghi, T. Deutsch, and
S. Goedecker, J. Chem. Phys. 138, 104109 (2013)

32 E. Hernández and M. J. Gillan, Phys. Rev. B 51, 10157
(1995)

33 N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847
(1997)

34 R. McWeeny, Rev. Mod. Phys. 32, 335 (1960)
35 S. Goedecker, Wavelets and Their Application: For the So-

lution of Partial Differential Equations in Physics (Presses
polytechniques et universitaires romandes, 1998)

36 A. Ruiz-Serrano and C.-K. Skylaris, J. Chem. Phys. 139,
164110 (2013)

37 P. W. Anderson, Phys. Rev. Lett. 21, 13 (1968)

38 P. Pulay, Chem. Phys. Lett. 73, 393 (1980)
39 S. Goedecker and C. J. Umrigar, Phys. Rev. A 55, 1765

(1997)
40 S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122

(1994)
41 S. Goedecker and M. Teter, Phys. Rev. B 51, 9455 (1995)
42 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes 3rd Edition: The Art of Sci-

entific Computing, 3rd ed. (Cambridge University Press,
New York, NY, USA, 2007)

43 L. E. Ratcliff, N. D. M. Hine, and P. D. Haynes,
Phys. Rev. B 84, 165131 (2011)

44 L. Genovese, B. Videau, M. Ospici, T. Deutsch,
S. Goedecker, and J.-F. Méhaut, C. R. Méc. 339, 149
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