1,463 research outputs found
Gauge Invariant Treatment of the Energy Carried by a Gravitational Wave
Even though the energy carried by a gravitational wave is not itself gauge
invariant, the interaction with a gravitational antenna of the gravitational
wave which carries that energy is. It therefore has to be possible to make some
statements which involve the energy which are in fact gauge invariant, and it
is the objective of this paper to provide them. In order to develop a gauge
invariant treatment of the issues involved, we construct a specific action for
gravitational fluctuations which is gauge invariant to second perturbative
order. Then, via variation of this action, we obtain an energy-momentum tensor
for perturbative gravitational fluctuations around a general curved background
whose covariant conservation condition is also fully gauge invariant to second
order. Contraction of this energy-momentum tensor with a Killing vector of the
background conveniently allows us to convert this covariant conservation
condition into an ordinary conservation condition which is also gauge invariant
through second order. Then, via spatial integration we are able to obtain a
relation involving the time derivative of the total energy of the fluctuation
and its asymptotic spatial momentum flux which is also completely gauge
invariant through second order. It is only in making the simplification of
setting the asymptotic momentum flux to zero that one would actually lose
manifest gauge invariance, with only invariance under those particular gauge
transformations which leave the asymptotic momentum flux zero then remaining.
However, if one works in an arbitrary gauge where the asymptotic momentum flux
is non-zero, the gravitational wave will then deliver both energy and momentum
to a gravitational antenna in a completely gauge invariant manner, no matter
how badly behaved at infinity the gauge function might be.Comment: 13 pages, revtex4. Final version. To appear in Phys. Rev.
Hadron multiplicities, pT-spectra and net-baryon number in central Pb+Pb collisions at the LHC
We compute the initial energy density and net baryon number density in 5%
most central Pb+Pb collisions at TeV from pQCD + (final state)
saturation, and describe the evolution of the produced system with
boost-invariant transversely expanding hydrodynamics. In addition to the total
multiplicity at midrapidity, we give predictions for the multiplicity of
charged hadrons, pions, kaons and (anti)protons, for the total transverse
energy and net-baryon number, as well as for the -spectrum of charged
hadrons, pions and kaons. We also predict the region of applicability of
hydrodynamics by comparing these results with high- hadron spectra
computed from pQCD and energy losses.Comment: 2 pages, 2 figures, to be presented at the workshop "Heavy Ion
Collisions at the LHC: Last Call for Predictions" at CERN 29 May - 2 Jun
Quantitative modeling of spin relaxation in quantum dots
We use numerically exact diagonalization to calculate the spin-orbit and
phonon-induced triplet-singlet relaxation rate in a two-electron quantum dot
exposed to a tilted magnetic field. Our scheme includes a three-dimensional
description of the quantum dot, the Rashba and the linear and cubic Dresselhaus
spin-orbit coupling, the ellipticity of the quantum dot, and the full angular
description of the magnetic field. We are able to find reasonable agreement
with the experimental results of Meunier et al. [Phys. Rev. Lett. 98, 126601
(2007)] in terms of the singlet-triplet energy splitting and the spin
relaxation rate, respectively. We analyze in detail the effects of the
spin-orbit factors, magnetic-field angles, and the dimensionality, and discuss
the origins of the remaining deviations from the experimental data
Future deceleration due to cosmic backreaction in presence of the event horizon
The present acceleration of the universe leads to the formation of a
cosmological future event horizon. We explore the effects of the event horizon
on cosmological backreaction due to inhomogeneities in the universe. Beginning
from the onset of the present accelerated era, we show that backreaction in
presence of the event horizon causes acceleration to slow down in the
subsequent evolution. Transition to deceleration occurs eventually, ensuring
avoidance of a big rip.Comment: Latex, 5 pages, 2 figures. This version has small changes to match
with the version published in MNRAS: Letter
Construction of the B88 exchange-energy functional in two dimensions
We construct a generalized-gradient approximation for the exchange-energy
density of finite two-dimensional systems. Guided by non-empirical principles,
we include the proper small-gradient limit and the proper tail for the
exchange-hole potential. The observed performance is superior to that of the
two-dimensional local-density approximation, which underlines the usefulness of
the approach in practical applications
- …