10 research outputs found

    An inventory of supranational antimicrobial resistance surveillance networks involving low- and middle-income countries since 2000.

    Get PDF
    Low- and middle-income countries (LMICs) shoulder the bulk of the global burden of infectious diseases and drug resistance. We searched for supranational networks performing antimicrobial resistance (AMR) surveillance in LMICs and assessed their organization, methodology, impacts and challenges. Since 2000, 72 supranational networks for AMR surveillance in bacteria, fungi, HIV, TB and malaria have been created that have involved LMICs, of which 34 are ongoing. The median (range) duration of the networks was 6 years (1-70) and the number of LMICs included was 8 (1-67). Networks were categorized as WHO/governmental (n = 26), academic (n = 24) or pharma initiated (n = 22). Funding sources varied, with 30 networks receiving public or WHO funding, 25 corporate, 13 trust or foundation, and 4 funded from more than one source. The leading global programmes for drug resistance surveillance in TB, malaria and HIV gather data in LMICs through periodic active surveillance efforts or combined active and passive approaches. The biggest challenges faced by these networks has been achieving high coverage across LMICs and complying with the recommended frequency of reporting. Obtaining high quality, representative surveillance data in LMICs is challenging. Antibiotic resistance surveillance requires a level of laboratory infrastructure and training that is not widely available in LMICs. The nascent Global Antimicrobial Resistance Surveillance System (GLASS) aims to build up passive surveillance in all member states. Past experience suggests complementary active approaches may be needed in many LMICs if representative, clinically relevant, meaningful data are to be obtained. Maintaining an up-to-date registry of networks would promote a more coordinated approach to surveillance

    Of Vulnerability and Agency: Perspectives from Survivors of Sex Trafficking in India

    No full text
    The recent Anti-Trafficking Bill in India (2018) has received considerable criticism for perpetuating a paternalistic attitude towards victims of sex trafficking. Scholars, activists and legal experts have pointed out the failure of the Act to recognise the agency of trafficked girls and women. In thinking about victimhood and agency, we draw attention to the need for thinking of ‘vulnerability’ in terms of complex intersectional processes and situations that render certain persons more vulnerable to trafficking. This article delves into contexts and vulnerabilities in the process of trafficking by drawing on women’s narratives about the lived experiences of sex trafficking. It is based on a qualitative field study through in-depth interviews of 51 survivors of sex trafficking who were sheltered in government and non-government organisations in the cities of Chennai and Hyderabad

    Trans \rightarrow Cis isomerization of trans-[(dPPM)2[(dPPM)_{2}Ru(H)(L)][BF4](L=P(OR)3)[BF_{4}] (L = P(OR)_{3})Complexes: Preparation of cis-[(dppm)2Ru(η2H2(L)][BF4]2[(dppm)_{2}Ru(\eta^{2}-H_{2}(L)][BF_{4}]_{2}

    No full text
    A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H-2)(L) [BF4](2) (dppm = Ph2PCH2PPh2; L = P(OMe)(3), P(OEt)(3), PF((OPr)-Pr-i)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF4] (L = P(OMe)(3), P(OEt)(3), P((OPr)-Pr-i)(3)) using HBF4.Et2O. The cis-[(dppm)(2)Ru(H)(L)][BF4] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H-2 ligand in the dihydrogen complexes is labile, and the loss of H-2 was found to be reversible. The protonation reactions of the starting hydrides with trans PMe3 or PMe2Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dPPM)(2)Ru(BF4)Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H (P(OMe)(3))][BF4], cis-[(dppm)(2)Ru-(H)(P(OMe)(3))][BF4], and cis-[(dppm)(2)Ru(H)(P((OPr)-Pr-i)(3))][BF4] complexes have been determined

    International cooperation to improve access to and sustain effectiveness of antimicrobials.

    Get PDF
    Securing access to effective antimicrobials is one of the greatest challenges today. Until now, efforts to address this issue have been isolated and uncoordinated, with little focus on sustainable and international solutions. Global collective action is necessary to improve access to life-saving antimicrobials, conserving them, and ensuring continued innovation. Access, conservation, and innovation are beneficial when achieved independently, but much more effective and sustainable if implemented in concert within and across countries. WHO alone will not be able to drive these actions. It will require a multisector response (including the health, agriculture, and veterinary sectors), global coordination, and financing mechanisms with sufficient mandates, authority, resources, and power. Fortunately, securing access to effective antimicrobials has finally gained a place on the global political agenda, and we call on policy makers to develop, endorse, and finance new global institutional arrangements that can ensure robust implementation and bold collective action
    corecore