125 research outputs found

    Pulmonary Specific Ancillary Treatment for Pediatric Acute Respiratory Distress Syndrome:From the Second Pediatric Acute Lung Injury Consensus Conference

    Get PDF
    OBJECTIVES: We conducted an updated review of the literature on pulmonary-specific ancillary therapies for pediatric acute respiratory distress syndrome (PARDS) to provide an update to the Pediatric Acute Lung Injury Consensus Conference recommendations and statements about clinical practice and research. DATA SOURCES: MEDLINE (Ovid), Embase (Elsevier), and CINAHL Complete (EBSCOhost). STUDY SELECTION: Searches were limited to children, PARDS or hypoxic respiratory failure and overlap with pulmonary-specific ancillary therapies DATA EXTRACTION: Title/abstract review, full-text review, and data extraction using a standardized data collection form. DATA SYNTHESIS: The Grading of Recommendations Assessment, Development, and Evaluation approach was used to identify and summarize evidence and develop recommendations. Twenty-six studies were identified for full-text extraction. Four clinical recommendations were generated, related to use of inhaled nitric oxide, surfactant, prone positioning, and corticosteroids. Two good practice statements were generated on the use of routine endotracheal suctioning and installation of isotonic saline prior to endotracheal suctioning. Three research statements were generated related to: the use of open versus closed suctioning, specific methods of airway clearance, and various other ancillary therapies. CONCLUSIONS: The evidence to support or refute any of the specific ancillary therapies in children with PARDS remains low. Further investigation, including a focus on specific subpopulations, is needed to better understand the role, if any, of these various ancillary therapies in PARDS.</p

    Association between length of storage of red blood cell units and outcome of critically ill children: a prospective observational study

    Get PDF
    INTRODUCTION: Transfusion is a common treatment in pediatric intensive care units (PICUs). Studies in adults suggest that prolonged storage of red blood cell units is associated with worse clinical outcome. No prospective study has been conducted in children. Our objectives were to assess the clinical impact of the length of storage of red blood cell units on clinical outcome of critically ill children. METHODS: Prospective, observational study conducted in 30 North American centers, in consecutive patients aged \u3c18 years with a stay\u3eor= 48 hours in a PICU. The primary outcome measure was the incidence of multiple organ dysfunction syndrome after transfusion. The secondary outcomes were 28-day mortality and PICU length of stay. Odds ratios were adjusted for gender, age, number of organ dysfunctions at admission, total number of transfusions, and total dose of transfusion, using a multiple logistic regression model. RESULTS: The median length of storage was 14 days in 296 patients with documented length of storage. For patients receiving blood stored \u3eor= 14 days, the adjusted odds ratio for an increased incidence of multiple organ dysfunction syndrome was 1.87 (95% CI 1.04;3.27, P = 0.03). There was also a significant difference in the total PICU length of stay (adjusted median difference +3.7 days, P \u3c 0.001) and no significant change in mortality. CONCLUSIONS: In critically ill children, transfusion of red blood cell units stored for \u3eor= 14 days is independently associated with an increased occurrence of multiple organ dysfunction syndrome and prolonged PICU stay

    Transcriptomic profiles of multiple organ dysfunction syndrome phenotypes in pediatric critical influenza

    Get PDF
    BackgroundInfluenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection.MethodsWe measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q&lt;0.05).ResultsComparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week.ConclusionThus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome

    Systemic and Lower Respiratory Tract Immunity to SARS-CoV-2 Omicron and Variants in Pediatric Severe COVID-19 and Mis-C

    Get PDF
    Mucosal immunity plays an important role in the control of viral respiratory infections like SARS-CoV-2. While systemic immune responses against the SARS-2-CoV-2 have been studied in children, there is no information on mucosal antibody response, especially in the lower respiratory tract of children coronavirus disease 2019 (COVID-19) and post-infectious multisystem inflammatory syndrome in children (MIS-C) against emerging SARS-CoV-2 variants. Therefore, we evaluated neutralizing antibody responses in paired plasma and endotracheal aspirates of pediatric severe, acute COVID-19 or MIS-C patients against SARS-CoV-2 WA1/2020, as well as against variants of concern (VOCs). Neutralizing antibody responses against the SARS-CoV-2 WA1/2020 strain in pediatric plasma were 2-fold or 35-fold higher compared with the matched endotracheal aspirate in COVID-19 or MIS-C patients, respectively. In contrast to plasma, neutralizing antibody responses against the VOCs and variants of interest (VOIs) in endotracheal aspirates were lower, with only one endotracheal aspirate demonstrating neutralizing titers against the Iota, Kappa, Beta, Gamma, and Omicron variants. In conclusion, our findings suggest that children and adolescents with severe COVID-19 or MIS-C have weak mucosal neutralizing antibodies in the trachea against circulating SARS-CoV-2 Omicron and other VOCs, which may have implications for recovery and for re-infection with emerging SARS-CoV-2 variants

    Evaluation of Mannose Binding Lectin Gene Variants in Pediatric Influenza Virus-Related Critical Illness

    Get PDF
    Background: Mannose-binding lectin (MBL) is an innate immune protein with strong biologic plausibility for protecting against influenza virus-related sepsis and bacterial co-infection. In an autopsy cohort of 105 influenza-infected young people, carriage of the deleterious MBL gene MBL2_Gly54Asp(“B”) mutation was identified in 5 of 8 individuals that died from influenza-methicillin-resistant Staphylococcus aureus (MRSA) co-infection. We evaluated MBL2 variants known to influence MBL levels with pediatric influenza-related critical illness susceptibility and/or severity including with bacterial co-infections.Methods: We enrolled children and adolescents with laboratory-confirmed influenza infection across 38 pediatric intensive care units from November 2008 to June 2016. We sequenced MBL2 “low-producer” variants rs11003125(“H/L”), rs7096206(“Y/X”), rs1800450Gly54Asp(“B”), rs1800451Gly57Glu(“C”), rs5030737Arg52Cys(“D”) in patients and biologic parents. We measured serum levels and compared complement activity in low-producing homozygotes (“B/B,” “C/C”) to HYA/HYA controls. We used a population control of 1,142 healthy children and also analyzed family trios (PBAT/HBAT) to evaluate disease susceptibility, and nested case-control analyses to evaluate severity.Results: We genotyped 420 patients with confirmed influenza-related sepsis: 159 (38%) had acute lung injury (ALI), 165 (39%) septic shock, and 30 (7%) died. Although bacterial co-infection was diagnosed in 133 patients (32%), only MRSA co-infection (n = 33, 8% overall) was associated with death (p &lt; 0.0001), present in 11 of 30 children that died (37%). MBL2 variants predicted serum levels and complement activation as expected. We found no association between influenza-related critical illness susceptibility and MBL2 variants using family trios (633 biologic parents) or compared to population controls. MBL2 variants were not associated with admission illness severity, septic shock, ALI, or bacterial co-infection diagnosis. Carriage of low-MBL producing MBL2 variants was not a risk factor for mortality, but children that died did have higher carriage of one or more B alleles (OR 2.3; p = 0.007), including 7 of 11 with influenza MRSA-related death (vs. 2 of 22 survivors: OR 14.5, p = 0.0002).Conclusions:MBL2 variants that decrease MBL levels were not associated with susceptibility to pediatric influenza-related critical illness or with multiple measures of critical illness severity. We confirmed a prior report of higher B allele carriage in a relatively small number of young individuals with influenza-MRSA associated death

    Enhancing sepsis biomarker development: key considerations from public and private perspectives.

    Get PDF
    Implementation of biomarkers in sepsis and septic shock in emergency situations, remains highly challenging. This viewpoint arose from a public-private 3-day workshop aiming to facilitate the transition of sepsis biomarkers into clinical practice. The authors consist of international academic researchers and clinician-scientists and industry experts who gathered (i) to identify current obstacles impeding biomarker research in sepsis, (ii) to outline the important milestones of the critical path of biomarker development and (iii) to discuss novel avenues in biomarker discovery and implementation. To define more appropriately the potential place of biomarkers in sepsis, a better understanding of sepsis pathophysiology is mandatory, in particular the sepsis patient's trajectory from the early inflammatory onset to the late persisting immunosuppression phase. This time-varying host response urges to develop time-resolved test to characterize persistence of immunological dysfunctions. Furthermore, age-related difference has to be considered between adult and paediatric septic patients. In this context, numerous barriers to biomarker adoption in practice, such as lack of consensus about diagnostic performances, the absence of strict recommendations for sepsis biomarker development, cost and resources implications, methodological validation challenges or limited awareness and education have been identified. Biomarker-guided interventions for sepsis to identify patients that would benefit more from therapy, such as sTREM-1-guided Nangibotide treatment or Adrenomedullin-guided Enibarcimab treatment, appear promising but require further evaluation. Artificial intelligence also has great potential in the sepsis biomarker discovery field through capability to analyse high volume complex data and identify complex multiparametric patient endotypes or trajectories. To conclude, biomarker development in sepsis requires (i) a comprehensive and multidisciplinary approach employing the most advanced analytical tools, (ii) the creation of a platform that collaboratively merges scientific and commercial needs and (iii) the support of an expedited regulatory approval process
    • …
    corecore