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Background: Mannose-binding lectin (MBL) is an innate immune protein with strong

biologic plausibility for protecting against influenza virus-related sepsis and bacterial

co-infection. In an autopsy cohort of 105 influenza-infected young people, carriage

of the deleterious MBL gene MBL2_Gly54Asp(“B”) mutation was identified in 5

of 8 individuals that died from influenza-methicillin-resistant Staphylococcus aureus

(MRSA) co-infection. We evaluated MBL2 variants known to influence MBL levels with

pediatric influenza-related critical illness susceptibility and/or severity including with

bacterial co-infections.

Methods: We enrolled children and adolescents with laboratory-confirmed influenza

infection across 38 pediatric intensive care units from November 2008 to June 2016.

We sequenced MBL2 “low-producer” variants rs11003125(“H/L”), rs7096206(“Y/X”),

rs1800450Gly54Asp(“B”), rs1800451Gly57Glu(“C”), rs5030737Arg52Cys(“D”) in patients and

biologic parents. We measured serum levels and compared complement activity in

low-producing homozygotes (“B/B,” “C/C”) to HYA/HYA controls. We used a population

control of 1,142 healthy children and also analyzed family trios (PBAT/HBAT) to evaluate

disease susceptibility, and nested case-control analyses to evaluate severity.
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Results: We genotyped 420 patients with confirmed influenza-related sepsis: 159 (38%)

had acute lung injury (ALI), 165 (39%) septic shock, and 30 (7%) died. Although bacterial

co-infection was diagnosed in 133 patients (32%), only MRSA co-infection (n = 33, 8%

overall) was associated with death (p < 0.0001), present in 11 of 30 children that died

(37%). MBL2 variants predicted serum levels and complement activation as expected.

We found no association between influenza-related critical illness susceptibility andMBL2

variants using family trios (633 biologic parents) or compared to population controls.

MBL2 variants were not associated with admission illness severity, septic shock, ALI, or

bacterial co-infection diagnosis. Carriage of low-MBL producing MBL2 variants was not

a risk factor for mortality, but children that died did have higher carriage of one or more

B alleles (OR 2.3; p = 0.007), including 7 of 11 with influenza MRSA-related death (vs. 2

of 22 survivors: OR 14.5, p = 0.0002).

Conclusions: MBL2 variants that decrease MBL levels were not associated with

susceptibility to pediatric influenza-related critical illness or with multiple measures of

critical illness severity. We confirmed a prior report of higher B allele carriage in a relatively

small number of young individuals with influenza-MRSA associated death.

Keywords: MBL, influenza, pediatric, methicillin-resistant Staphylococcus aureus, critical illness, sepsis, mortality

INTRODUCTION

Severe sepsis is the most common cause of death in infants

and children across the world (1). Influenza virus is a common

global pathogen causing severe sepsis, and annually leads to
100–350 deaths and over 25,000 hospitalizations in North
American children (2–4). Influenza suppresses the immune

system, allowing respiratory tract colonizers to invade and
cause bacterial co-infection, a major contributor to influenza-
relatedmorbidity andmortality (5). In 2003, methicillin-resistant
Staphylococcus aureus (MRSA) emerged in the United States
as a major co-infecting bacterial organism in children with
influenza virus infection and an independent predictor of death
(6). In comparison to healthy adults, children are heavily reliant
on innate immunity for protection against influenza virus and
bacterial pathogens as they have limited adaptive immunity and
fewer years of exposure to develop anti-microbial antibodies (7).

The wide spectrum of influenza virus-related disease
severity is likely influenced by host genetics. Novel primary
immunodeficiencies to influenza and other common viruses
have been identified in children previously thought to be healthy
(8–10). Most are in interferon regulatory genes, essential for
innate immunity to viruses (11). However, other gene pathways
may influence disease severity, particularly in relation to
bacterial co-infection. Mannose-binding lectin (MBL), a key
innate immunity pattern-recognition protein, activates the lectin
complement pathway. MBL has strong biologic plausibility as
an innate immunity candidate protein that could protect against
influenza-related sepsis with and without bacterial co-infection
(12). MBL binds to microbial surface glycosylation residues and
targets influenza virus via direct neutralization, by recognition
of influenza hemagglutinin surface proteins on infected cells,
and can also ameliorate severity by defending against bacterial

pathogens (13–15). Additionally, influenza virus uses a glycan-
binding entry mechanism to invade host cells, and lectins such as
MBL may interfere directly with entry of the pathogen into the
cell (16).

MBL serum levels and functional activity are strongly
influenced by five single nucleotide polymorphisms (SNPs) in
the MBL2 gene. As shown in Figure 1A, three MBL2 missense
mutations in Exon 1, “B” (rs1800450_A; codon 54 Gly to
Asp), “C” (rs1800451_A; codon 57 Gly to Glu), and “D”
(rs5030737_T; codon 52 Arg to Cys), combine with MBL2
promoter polymorphisms “H/L” and “Y/X” to form low-,
intermediate- and high-producing MBL haplotypes (17, 18) (see
Figure 1B). Although all 3 exon mutations are associated with
the lowest levels of MBL, only the B variant Asp residue has
been reported to destabilize circulating MBL oligomers having
a dominant effect when present, further decreasing functional
activity (15, 19, 20). MBL deficiency is common, and may occur
in 30% of the population depending on what MBL level cutoff
is used for defining it; deficiency has been defined variably
as <1,000, <500, <200, or <100 ng/mL (21). In critically ill
patients, serum levels may be influenced by inflammation,
diluted by fluid resuscitation, or raised via fresh frozen plasma
transfusion, so genotype has been used as an inexact proxy to
estimate pre-illness MBL deficiency (17, 22).

Many studies have evaluated the association between MBL
genotypes and sepsis, with most comparing carriage of low-
MBL producing mutations in B, C or D mutation in exon 1
(termed “O”) to wild-type (“A”), but the studies have shown
conflicting and inconclusive results (23). A limited number of
small studies have evaluated associations between MBL and
influenza-related critical illness. Herrera-Ramos et al reported
no increased frequency of low-producing MBL genotypes in
93 adult Spanish inpatients and outpatients infected with 2009
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FIGURE 1 | (A) MBL2 gene with known low-producer variant polymorphisms. Marked positions denote promoter variants H/L and Y/X, and exon 1 variants “B,” “C,”

and “D” (collectively termed “O”). (B) The gene-to-level analysis (n = 265) included all genotyped patients who also had measured MBL levels. Box and whisker plots

indicate serum level quartiles: 1st quartile (bottom line) 2nd/3rd quartile (box) with median at line, and 4th quartile (top line). MBL2 haplotypes combined into

diplotypes with associated serum MBL levels (n = number of patients included); wild type (A/A), heterozygote (A/O), and homozygotes (O/O) with additions of

low-producing promoters from left-to-right within each X-axis group. Specific variants within LYO/LYO homozygotes are shown in insert; there were not significant

differences in levels among B/B, C/C, and B/C homozygotes. Four patients (3 HYA/LYA, 1 LYA/LXA) had values > the Y axis set maximum of 4,500 ng/mL. Dashed

line indicates 500 ng/mL throughout.

pandemic H1N1 (H1N1pdm09) (24) Higher MBL serum levels
were associated with mortality in 27 influenza H1N1pdm09-
infected critically ill adults (25) whereas 12 critically ill pediatric
patients had lower levels compared to ward patients (26). A case
series comparingMBL2 genotypes in 100 fatal pediatric influenza
cases (from autopsy samples) with a pediatric population control
cohort did not find differences in the frequency ofMBL2 variants
known to influence MBL levels after stratifying by ethnicity, but
fatal influenza cases with MRSA co-infection were more likely to
carry the B mutation (27).

The 2017 World Health Organization Public Health Research
Agenda emphasized that identifying host genetic factors
influencing influenza susceptibility and severity is paramount
for targeting prevention and identifying novel therapeutics
(28). MBL repletion is feasible (29) for influenza-infected
children predicted to have low or deficient levels. Identification
of associations between MBL variants known to influence
levels, influenza-related sepsis, and bacterial co-infection could
allow opportunities for precision diagnostics and interventions.
Therefore, we evaluated associations between MBL2 variants
and overall influenza susceptibility, severity, and bacterial co-
infection in a multicenter prospective cohort of critically ill
children and adolescents in the Pediatric Intensive Care Influenza
(PICFLU) Study.

MATERIALS AND METHODS

From November 2008 through June 2016, the PICFLU
Study prospectively enrolled patients (<21 years of age)
admitted to 38 PICUs in the Pediatric Acute Lung Injury
and Sepsis Investigator’s (PALISI) Network with suspected or
confirmed community-acquired influenza infection. Details of
the PICFLU Study design have been previously published (7,
11, 30, 31). Beginning in fall 2010, patients with known risk
factors for becoming severely ill with influenza virus such as
immunodeficiency, severe chronic lung or heart conditions, were
excluded to enrich for identification of genetic susceptibility
factors. Testing for influenza virus and other viral pathogens
was performed at the enrolling site and in collected respiratory
samples using sensitive PCR testing (30, 31). Bacterial co-
infection was defined as a diagnosis at the clinical site with
microbiologic identification of the pathogen within 72 h prior to
or after PICU admission (to exclude hospital-acquired infection).
Cultures had to come from a sterile site: endotracheal or
bronchoscopic specimen, bloodstream or pleural fluid (31).
Patients were defined as previously healthy if they had no
underlying comorbidities and were on no chronic medications.
Sepsis was defined using the 2005 International Consensus
Conference on Pediatric Sepsis criteria (32). Illness severity was
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assessed by the Pediatric Risk of Mortality (PRISM) III Score
(33). The American European Consensus Conference Criteria
were used for diagnosis of acute lung injury (ALI) and acute
respiratory distress syndrome (ARDS) (34).We collected samples
from pediatric patients (blood) and their parents (saliva). Blood
was collected as close to admission as possible and used both
for DNA extraction and MBL serum level measurements. Each
enrolling site received site Institutional Review Board approval.
Written informed consent was obtained from a parent or legal
guardian for patients and for each parent contributing their own
sample for DNA. The population control cohort included healthy
adolescents (12–19 years old) from the National Health and
Nutrition Examination Survey (NHANES) (35) who had MBL2
genotyping available (27).

Serum MBL Evaluation, MBL2 Genotyping,
and MBL Functional Assessment
Genomic DNA from peripheral blood was extracted using
the Gentra Puregene Blood kit (Qiagen). Saliva samples
were collected using Oragene Saliva kits (DNA Genotek Inc.,
Ontario, Canada). DNA extraction followed manufacturer’s
recommendations. We used TaqMan assays to genotype
samples for single nucleotide polymorphism (SNPs) using
the TaqMan OpenArray R© SNP Genotyping Platform (Applied
Biosystems, Foster City, CA). We genotyped the following
SNPs known to influence MBL levels from both patients
and biologic parents: rs7096206 (“Y/X”), rs11003125 (“H/L”),
rs1800450_AGly54Asp (allele “B”), rs1800451_AGly57Glu (allele
“C”), and rs5030737_TArg52Cys (allele “D”) (see Figure 1A).

To identify rare deleterious variants in MBL2, we performed
targeted re-sequencing of the exons and nearby regions using
Illumina TruSeq Custom Amplicon kit (TSCA, Illumina, San
Diego, CA) as described previously (30), and this was compared
with Taqman genotyping. In samples where genotyping remained
inconclusive, Sanger sequencing for the 5 SNPs in MBL2
was performed.

For patients enrolled prior to May 2014, MBL serum level
measurements were done at the Cytokine Reference Laboratory
using a commercial enzyme-linked immunosorbent assay kit
from R&D Systems (Minneapolis, MN).

MBL protein activity was evaluated by measuring lectin
pathway complement fixation in the sera of homozygote patients,
either “B/B” (n = 4) or “C/C” (n = 2), and compared to
wild type controls (HYA/HYA; n = 6). There were no “D/D”
homozygotes for evaluation. Dilutions of patient and control
sera were incubated on mannan (Sigma M7504) coated plates
in Tris buffered saline with Tween and 5mM CaCl2 (Boston
Bioproducts). After incubation at 37◦C and rinsing, deposited
C3 fragments were detected with HRP-labeled polyclonal
sheep anti-human C3c (BioRad 2222-6604P) and measured by
ELISA. Lectin pathway activity was determined by comparing
absorbance at 450 nm of C3c bound to mannan from patient sera
as previously described (36, 37).

Statistical Analyses
MBL2 genotypes were correlated with MBL serum levels to
ensure that previously described (17, 38) relationships between

MBL2 variants and serumMBL levels were present in the PICFLU
cohort. A multiple linear regression model, adjusting for gender,
bacterial co-infection, age, race, and influenza status, was used
to evaluate associations between variant alleles and serum levels.
Frequencies of allele distribution were also compared between
influenza virus subgroups (H1N1pdm09 versus non-H1N1pdm09;
influenza A vs. B) and racial groups (all races, white only, white
non-Hispanic). Categorical variables were compared using Chi-
square test or Fisher’s Exact Tests and continuous variables with
the Wilcoxon-Mann-Whitney test.

MBL2 variant frequencies vary by ethnicity and race. To
control for possible confounding by population substructure, we
used family-based analyses (PBAT/HBAT) (39–41) based on the
Transmission Disequilibrium Test (TDT) in family trios. When
analyzing family trios, only heterozygous parents are included,
expected to transmit either alleles 50% of the time to their
children. Significantly increased/decreased allele transmission
above 50% is defined as transmission disequilibrium. A positive
TDT test suggests that the gene itself influences susceptibility to
the disease or is in tight linkage with the disease-predisposing
gene (39, 41). The software (www.hsph.harvard.edu/fbat) was
used to analyze the pedigrees using the PBAT test for individual
variants and statistical power estimation and HBAT for MBL2
haplotypes (minimum informative families = 10), first testing
the additive model, with follow-up testing of dominant and
recessive models.

We compared MBL2 variant frequencies in PICFLU to a
population control cohort of healthy children (12–19 years old),
from the National Health and Nutrition Examination Survey
(NHANES) (35) who had MBL genotyping available (27). We
stratified the comparison by the racial groups reported in
NHANES (white non-Hispanic, Black non-Hispanic and white
Hispanic). We tested for Hardy Weinberg equilibrium in each
subgroup and compared frequencies using the allelic test (using
Rx64 3.2.1 software package) (42).

In the severity analysis, we a utilized a whole genome
association analysis toolset called PLINK (43) (available at
https://pngu.mgh.harvard.edu/~purcell/plink/) that uses Chi-
square or Fishers Exact tests to evaluate allele and genotype
associations. We evaluated associations between the five
individualMBL2 alleles and severity phenotypes using the allelic
test (42). Data were analyzed in the entire genotyped cohort,
as well as in the major racial ethnic subgroup (white non-
Hispanics) to exclude confounding by population admixture.
Severity markers included the continuous PRISM-III admission
illness severity score (33) (untransformed and Log transformed)
and the dichotomous outcomes of ALI/ARDS, extracorporeal
life support (ELS), bacterial co-infection, septic shock, and
hospital mortality.

To control for multiple comparisons, we used a Bonferroni
corrected p-value critical value of 0.0083 (0.05/6) adjusted for 5
MBL2 variants making 6 haplotypes that were tested. Although
this adjustment may not be sufficiently stringent given the
number of phenotypes tested, the severity phenotypes were
not independent.

A priori, we planned to test for interactions with other
reported genetic associations in PICFLU, which was with
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IFITM3 rs34481144 and mortality (11). IFITM3 rs12252 was not
associated with influenza susceptibility or severity in PICFLU
(30). We also recently reported higher mortality in children with
influenza-MRSA co-infection with vancomycin monotherapy vs.
dual anti-MRSA coverage (31). So we used Gaussian linear
modeling to check for interaction with antibiotic therapy and
associated alleles using the lm function in the R basic statistical
library (Supplemental Table 3). We did not correct for multiple
comparisons in these secondary analyses.

RESULTS

We enrolled and genotyped 420 children with confirmed
influenza-related critical illness; 333 (80%) had influenza A
infection (41% H1N1pdm09, 15% H3N2, 23% other), and 81
(19%) had influenza B infection. Table 1 lists the demographic
characteristics and clinical course of the patients, including
comorbid conditions and complications. Of the 420 children, 159
(38%) developed ALI/ARDS, 165 (39%) developed septic shock
requiring vasopressors and 30 patients died (7%). Influenza-
MRSA co-infection was present in 33 of 420 children in
the cohort (8%) and was a risk factor for mortality (p <

0.0001) present in 37% of fatalities but only 6% of survivors.
Influenza-MSSA co-infection was identified in 41 children (10%),
but was present approximately equally (∼10%) in deaths and
survivors (p= 0.1)

The subgroup of 265 patients enrolled prior to May 2014
with available MBL levels had similar demographics and clinical
characteristics to the full cohort. The median MBL level was
1,076 ng/ml (interquartile range [IQR] 666–1,894 ng/mL; range
71–7,028). Forty-four patients had levels <500 and 3 patients
had levels <100 ng/ml. As shown in Figure 1B, as would be
expected wild type (HYA/HYA) diplotypes had the highest levels
(median 2,155; IQR 1,698–2,488) and homozygotes for an “O”
(B, C, or D) allele had the lowest levels (17, 38). Using multiple
linear regression adjusted for sex, race and age, on average, each
promoter L variant carried was predicted to decrease MBL levels
by 12% (p= 0.04), each promoter X by 35% (p< 0.001), and each
O allele (B, C, or D) by 56% (p < 0.001, full regression model
shown in Supplemental Table 1).

The results of the in vitro complement fixation analysis
are shown in Figure 2. Homozygote B/B or C/C serum
had minimal fixation of C3c complement, including those
patients with measured serum levels of >500. There were
no D/D homozygotes to test. High MBL producing (wild
type) controls (HYA/HYA) fixed complement at expected
dilutions (17, 36, 37).

Targeted re-sequencing of the MBL2 exons identified a rare
deleterious variant in a white Hispanic patient who had an MBL
serum level below the assay’s detectable limits (<3.2 ng/mL).
This patient was excluded from the gene-to-level analyses. The
patient had an HYA/LYA genotype so was predicted to be a high-
MBL producer (see Figure 1B). However, he was homozygous
for rs74754826 which creates a premature stop codon at
aa210 leading to null production of MBL. According to the
gnomAD database (gnomAD r2.0.2), the variant is not usually

identified in populations of European or Hispanic origin and
is overall rare (frequency 0.0006, http://gnomad.broadinstitute.
org/variant/10-54528016-C-A) with a relatively higher frequency
in populations of African origin (MAF = 0.006). The patient
was born prematurely and the respiratory viral culture grew
cytomegalovirus at time of influenza diagnosis. The patient
had recurrent upper and lower respiratory infections before
admission and after discharge.We identified no other individuals
with rare, potentially deleterious mutations inMBL2.

The results of the individual SNP (PBAT) and haplotype
(HBAT) family-based analyses are shown in Table 2. Estimated
statistical power in PBAT was acceptable for lowMBL-producing
variants (X, B, C, and D) but not for the L variant, which is
in tight linkage with the other low-producing variants and has
minimal influence on MBL levels by itself. From 633 available
parents there were 252 nuclear families. Due to high linkage
disequilibrium, the five variant alleles combined into six common
(≥5% frequency) haplotypes with the X, B, C, and D alleles
each represented by one haplotype (17, 38). No transmission
disequilibrium was detected for MBL variants or haplotypes (p
≥ 0.06 for all analyses).

Figure 3 shows the MBL2 variant frequencies in the PICFLU
cohort (for whom self-reported race and ethnicity were available,
n = 357) compared to the NHANES pediatric population (n
= 1,142) sub-grouped by race and ethnicity (data provided in
Supplemental Table 2 and individual patient data available upon
request). No significant differences were identified (all p > 0.05).
HWE was p > 0.05 in all subgroups except the X allele was out of
HWE in the white Hispanic NHANES controls.

In the severity analyses, none of the individualMBL2 variants
were associated with overall illness severity (PRISM III score), or
with frequency of shock requiring vasopressors, ALI, or bacterial
co-infection (all p > 0.05). Carriage of the B missense mutation
was higher in children that died. As shown in Figure 4A, in
children that died 47% (14/30) carried at least one B mutation
compared to 26% (100 of 390) survivors (OR 2.3, p = 0.007
overall; white non-Hispanics n = 217, OR 2.9, p = 0.007). The
B mutation was not associated with the frequency of MRSA
co-infection (p = 0.65, Figure 4B). MRSA co-infection was a
risk factor for death, however, and 64% (n = 7/11) of children
with influenza-MRSA co-infection that died carried at least one
B mutation compared to 9% (2/22) survivors with influenza-
MRSA co-infection (OR 14.5; p = 0.0002; see Figure 4C).
In influenza-infected children who died without MRSA co-
infection, 37% (n = 7/19) carried at least one B mutation
compared to 27% (n = 98/368) of survivors (OR 1.3, p = 0.49,
see Figure 4D).

The characteristics and clinical course of the 11 children
that died with influenza-MRSA co-infection are shown in
Table 3. All children received fluid resuscitation for severe
shock and required vasopressors. Ten (91%) were supported via
extracorporeal life support (ELS) before death. Although older
age was associated with mortality (see Table 1), age was not
associated with B allele carriage (p = 0.48) so it was not a
confounder. The B allele was also not associated with IFITM3
variant rs34481144 which we previously reported was associated
with mortality in PICFLU (11).
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TABLE 1 | Demographic and clinical characteristics, clinical course, and outcomes of the critically ill children in the PICFLU cohort including a comparison of those with

fatal vs. non-fatal infection.

Total Fatal Survived P-Value∧

(N = 420) (N = 30) (N = 390)

Female, N (%) 163 (38.8) 14 (46.7) 149 (38.2) 0.4

Hispanic, N (%) 113 (26.9) 11 (36.7) 102 (26.2) 0.2

Race, N (%) 0.3

White 305 (72.6) 22 (73.3) 283 (72.6) 0.9

African-American 64 (15.2) 2 (6.7) 62 (15.9)

Asian 14 (3.3) 1 (3.3) 13 (3.3)

Mixed or Other 37 (8.8) 5 (16.7) 32 (8.2)

Age, years, med (IQR) 6.5 (2.4, 11.2) 10.1 (1.7, 14.2) 6.3 (2.4, 10.9) 0.09

Baseline Health Status*, N (%)

Previously Healthy 226 (53.8) 17 (56.7) 209 (53.6) 0.7

Respiratory* 140 (33.3) 4 (13.3) 136 (34.9)

Immune Compromised* 6 (1.4) 3 (10.0) 3 (0.8)

Other* 177 (42.1) 13 (43.3) 164 (42.1)

Support and Complications, N (%)

Acute Lung Injury 159 (37.9) 23 (76.7) 136 (34.9) <0.0001

Myocarditis 11 (2.6) 3 (10.0) 8 (2.1) 0.04

Encephalitis 10 (2.4) 0 (0) 10 (2.6) 1.0

Shock Receiving Vasopressors 165 (39.3) 138 (35.4) 27 (90.0) <0.0001

Extracorporeal Life Support 46 (11.0) 17 (56.7) 29 (7.4) <0.0001

PRISM Score, median (IQR) 5 (2, 11) 26.5 (11, 34) 5 (2, 10) <0.0001

Bacterial Co-infection**, N (%) 133 (31.7) 18 (60.0) 115 (29.5) 0.0005

Methicillin-resistant S. aureus 33 (7.9) 11 (36.7) 22 (5.6) <0.0001

Methicillin-resistant S. aureus 41 (9.8) 3 (10.0) 38 (9.7) 1.0

Streptococcus pneumoniae 16 (3.8) 1 (3.3) 15 (3.9) 1.0

Other Bacteria 50 (11.9) 3 (10.0) 47 (12.1) 1.0

Viral Co-infection, N (%) 94 (22.6) 6 (20.0) 88 (22.6) 0.7

Influenza Type, N*** (%)

Influenza A 333 (79.7) 22 (73.3) 311 (80.2) 0.4

H1N1pdm09 170 (40.5) 12 (40.0) 158 (40.5)

H3N2 68 (16.2) 4 (13.3) 64 (16.4)

Other or no subtype 95 (22.6) 6 (20.0) 89 (22.8)

Influenza B 81 (19.3) 8 (26.7) 73 (18.7) 0.3

Influenza A and B 2 (0.5) 0 (0) 2 (0.5)

*Children could have multiple underlying medical conditions and **multiple bacterial co-infections.

***4 patients were Influenza positive with subtype unknown.
∧p-values compare Fatal vs. Survived groups. Bolded values are statistically significant.

We previously published an association between vancomycin
monotherapy and death in influenza-MRSA co-infected patients
(31), therefore in a secondary analysis we evaluated antibiotic
monotherapy as a potential explanation for the association of
the B mutation carriage and death. There was no association
between carriage of a B mutation and the number (monotherapy
vs. two or more) of anti-MRSA antibiotics received in the first
24 h of PICU admission (p = 0.44). Multiple logistic regression
confirmed an association between anti-MRSA monotherapy and
increased mortality (p = 0.007) and an independent mortality
association with carriage of one B mutation (p = 0.0007). There
were only two BB homozygotes with MRSA co-infection and
both died, precluding comparison.

DISCUSSION

In North American children and adolescents admitted to the
PICU with influenza virus infection during the 2008 to 2016
influenza seasons, MBL2 variants predicting low MBL levels did
not explain disease susceptibility. The fourMBL2 low-producing
variants did influence MBL serum levels and the B and C
alleles decreased MBL functional activity as previously described
(17, 18, 38). Carriage of low-producing MBL2 variants was
not associated with higher disease severity on admission, with
development of ALI or shock, or with diagnosis of bacterial co-
infection. MBL deficiency does not appear to confer higher risk
for severe influenza infection or influenza-related complications.
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FIGURE 2 | Complement (C3c) fixation by ELISA. Controls (HYA/HYA) fixed

complement at typical absorbance (450 nm) measurements despite serial

dilutions. Homozygotes [rs1800450Gly54Asp(B/B) and

rs1800451Gly57Glu(C/C)] had markedly reduced complement activation. Bars

above and below data points indicate standard deviation. Patients with

measured serum levels available have numerical (ng/mL) levels labeled on

right. There were no rs5030737Arg52Cys(D/D) homozygotes in the population.

TABLE 2 | Results of the Family Based Association Test Analysis in children with

influenza using PBAT for individual SNPs and HBAT for haplotypes.

SNP (allele) Frequency Families Z-Score P-value∧ Power*

H (rs11003125) 0.39 166 −1.74 0.08 0.05

L 0.61 +1.74

Y (rs7096206) 0.84 126 −0.34 0.73 1.00

X 0.16 +0.34

B (rs1800450) 0.14 104 +1.66 0.10 1.00

Wild Type 0.86 −1.66

C (rs1800451) 0.05 36 −1.76 0.08 1.00

Wild Type 0.95 +1.76

D (rs5030737) 0.05 51 −0.14 0.89 1.00

Wild Type 0.95 +0.14

Haplotype Frequency Families Z-Score P-value∧

HYA 0.34 158 −1.73 0.08 –

LYA 0.25 151 0.75 0.45 –

LXA 0.16 121 0.53 0.60 –

LYB 0.14 97 1.88 0.06 –

LYC 0.05 31 −1.72 0.09 –

HYD 0.05 45 0.17 0.87 –

*Calculated using the Additive Model in PBAT.
∧p-values are using the Additive Model.

We found MBL did not increase susceptibility to severe
influenza infection in pediatric patients. Overall, the literature on
whether low MBL predisposes to severe infections is conflicting.
A systematic review and meta-analysis of studies published
before 2013 (23) reported increased risk of sepsis susceptibility
in children carrying an “O” (B, C, or D) variant and in white
adults carrying a B mutation (23). Subsequently, a large study
of 1,839 European adults with sepsis from community acquired
pneumonia (viral and/or bacterial) or peritonitis showed no
association between low-producingMBL2 variants and infection
susceptibility or severity (44). Similarly, a meta-analysis of
5 pediatric studies showed that the B allele was not a risk
factor for recurrent respiratory infections in children (45). A
meta-analysis of 7 neonatal studies (mostly premature infants)
associated low MBL, using levels and predictive variants, with
development of sepsis (46). Population-based birth cohort
studies showed no increased risk of invasive (bacteremia or
meningitis) meningococcal (47) or pneumococcal (48) disease
in Danish children carrying low-producing MBL2 variants. A
large cohort of hospitalized children with meningococcemia also
did not have higher carriage of O alleles (49). In single center
nested case-control PICU studies, we reported no differences in
carriage of low-producing MBL2 variants in patients with severe
infections (22) but others reported a 2-fold overall increase in
carriage of the O allele with an increase in homozygotes (50).
Although MBL2 haplotypes associated with deficiency appear to
be a risk factor for a range of infections in neonates or other
immune compromised patients, our study adds to the literature
that carriage of low-producing MBL2 variants does not increase
risk of severe viral infections (51). We did identify one child
carrying an extremely rare, highly deleterious mutation inMBL2,
further adding to the literature that rare variants play some role
in severe influenza infection susceptibility (8).

We report an association with influenza virus-related
mortality and increased carriage of the B mutation in PICFLU,
primarily limited to children with MRSA co-infection. The study
that stimulated us to evaluate MBL was a pediatric autopsy
series reporting of increased carriage of the B mutation in
children dying from influenza-MRSA co-infection (27). The
autopsy cohort had no survivors for comparison, but 56% (n
= 5/8) of children dying from influenza-MRSA carried a B
mutation (27), significantly higher than the ∼14% expected
across the population. Similarly, in PICFLU 64% of children
dying from influenza-MRSA co-infection carried the B allele
(n = 7) compared to 9% of children who survived the co-
infection. However, the number of influenza-MRSA deaths
carrying the B allele across both studies is only 12, precluding
any strong conclusions. The association should not be specific
to MRSA. Carriage of the B allele was not higher overall in
children with influenza-MRSA co-infection. Prior reports of
the association of MBL deficiency and death have not been
replicated. Eisen et al. combined individual patient data from 4
studies in a meta-analysis, using<500 ng/uL to define deficiency,
and reported that deficiency increased the risk of death from
Streptococcus pneumoniae (52). A subsequent study did not
replicate this finding (44). The complement system is redundant,
which may lead to contradictory results from evaluation
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FIGURE 3 | PICFLU MBL variant frequencies, compared with NHANES pediatric population reference, by ethnicity/racial subgroups. Frequencies of all variants were

similar (p > 0.05 for all comparisons). The calculated 95% confidence interval around the allelic point estimate is shown.

FIGURE 4 | (A) Distribution of rs1800450Gly54Asp(B) in children with influenza critical illness who died or survived (numbers shown) to hospital discharge in all children

(n = 420). Mortality was higher in all children carrying at least one copy of the rs1800450Gly54Asp(B) allele (p = 0.007). (B) Distribution of rs1800450Gly54Asp(B) in

children with and without methicillin-resistant Staphylococcus aureus (MRSA) co-infection. There was no association with risk of contracting MRSA co-infection (p =

0.65). However, sub-analysis of deaths in patients with MRSA co-infection compared to those without MRSA co-infection showed a strong association of

rs1800450Gly54Asp(B) with mortality in the patients with MRSA co-infection. (C) rs1800450Gly54Asp(B) Association with MRSA Co-infection Died vs. MRSA

Co-infection Survived (p = 0.0002). (D) No MRSA Died vs. No MRSA Survived (p = 0.49).
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TABLE 3 | Characteristics and MBL2 genotype and MBL level (when available) of children with fatal influenza MRSA co-infection in the PICFLU cohort.

Age group/gender Influenza type MBL2 haplotype MBL2 mutation MBL level Risk factors∧

13–18 yrs/Male Influenza B HYA/LYB rs1800450 (B) 1063* None

13–18 yrs/Female Influenza A H3 HYA/LYB rs1800450 (B) Not available None

13–18 yrs/Male Influenza B LXA/LYB rs1800450 (B) 666* None

13–18 yrs/Male Influenza B LXA/LYB rs1800450 (B) 570 None

13–18 yrs/Male Influenza B LYB/LYC rs1800450 (B), rs1800451 (C) 338* None

5–12 yrs/Male Influenza A(H1N1)pdm09 LYB/LYB rs1800450 (B/B) 1025* None

13–18 yrs/Male Influenza A(H1N1)pdm09 LYB/LYB rs1800450 (B/B) Not available None

13–18 yrs/Male Influenza A H3 LYC/LYC rs1800451 (C/C) 707 None

13–18 yrs/Female Influenza B HYA/HYA none 1417* None

5–12 yrs/Male Influenza A(H1N1)pdm09 LYA/LYA none 1042** None

13–18 yrs/Male Influenza A(H1N1)pdm09 LYA/LYA none 708* Asthma

Carriage of one or more copies of the rs1800450(B) allele was present in 7 of the 11 children.
∧All patients were intubated, and met criteria for both shock and ARDS. All patients except one received extracorporeal life support (ELS) prior to death.

*MBL levels measured after initiation of ELS or **unknown when MBL level measured in relationship to ELS initiation.

of MBL2 variants across different populations. Contradictory
results could also be because increased inflammation from
complement activation from high-MBL production could make
low-producing MBL2 genotypes protective (53). However, in
contrast to reports in adult patients, we saw no evidence of
increased lung disease severity (25, 54). or organ dysfunction
(55) in children and adolescents with higher MBL. Overall,
MBL levels in our population were higher than expected for
carriers of an O allele (56), which are usually predicted to be
<200 ng/ml (21). This may be secondary to fresh-frozen plasma
administration (29) during critical illness or from inflammatory
phase elevation.

The PICFLU cohort is a major strength of this study,
including children and adolescents with influenza critical
illness from multiple centers with rigorous diagnostic testing
and phenotyping. The majority of children were previously
healthy, including almost all of those that died, increasing
the ability to identify genetic influences in severe influenza
infection. The inclusion of parental DNA facilitated family-based
association testing. Use of sera from the influenza-infected
homozygote patients allowed us to verify that variant MBL
markedly decreased complement activity. We used a rigorous
diagnosis of bacterial co-infection requiring microbiologic
confirmation and clinical diagnosis. Although we did not
have sufficient sera to demonstrate decreased anti-influenza
activity in low-MBL producer variants, this has been shown
previously (13). This study was a priori designed evaluate
the association of MBL and other candidate genes with
influenza infection, and we did not have consent to perform
whole genome or whole exome sequencing (11, 30). We
also did not evaluate other proteins in the lectin pathway
of compliment activation (57). Because most PICFLU
patients were white and not Hispanic, our findings are
generalizable mainly to that group. Unfortunately, we
were unable to identify a similar prospectively enrolled
cohort of children with influenza-related critical illness for
further independent validation of our findings, which is a
major limitation.

In summary, we conclude that MBL deficiency is not a
risk factor for very severe influenza infection in children
and adolescents. Children predicted to have MBL deficiency
were not at higher risk of more severe critical illness or
development of influenza-associated complications such as ALI
or bacterial co-infection. We did confirm a previously reported
association of higher carriage of the B allele in children that
died from influenza-MRSA co-infection, but our confidence
in this finding is low due to the small number of patients.
It must be noted, that the majority of critical illness from
influenza virus at PICFLU sites is preventable by vaccination
(58), which in addition to supportive care and influenza
antivirals is currently the most effective way to decrease
influenza-related mortality.
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