361 research outputs found

    A Double‐Blind Randomized Placebo‐Controlled Trial of Oral Naltrexone for Heavy‐Drinking Smokers Seeking Smoking Cessation Treatment

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137315/1/acer13396.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137315/2/acer13396_am.pd

    Cyberbiosecurity: A New Perspective on Protecting U.S. Food and Agricultural System

    Get PDF
    Our national data and infrastructure security issues affecting the “bioeconomy” are evolving rapidly. Simultaneously, the conversation about cyber security of the U.S. food and agricultural system (cyber biosecurity) is incomplete and disjointed. The food and agricultural production sectors influence over 20% of the nation's economy ($6.7T) and 15% of U.S. employment (43.3M jobs). The food and agricultural sectors are immensely diverse and they require advanced technologies and efficiencies that rely on computer technologies, big data, cloud-based data storage, and internet accessibility. There is a critical need to safeguard the cyber biosecurity of our bio economy, but currently protections are minimal and do not broadly exist across the food and agricultural system. Using the food safety management Hazard Analysis Critical Control Point system concept as an introductory point of reference, we identify important features in broad food and agricultural production and food systems: dairy, food animals, row crops, fruits and vegetables, and environmental resources (water). This analysis explores the relevant concepts of cyber biosecurity from food production to the end product user (such as the consumer) and considers the integration of diverse transportation, supplier, and retailer networks. We describe common challenges and unique barriers across these systems and recommend solutions to advance the role of cyber biosecurity in the food and agricultural sectors

    Targeted analysis of four breeds narrows equine Multiple Congenital Ocular Anomalies locus to 208 kilobases

    Get PDF
    The syndrome Multiple Congenital Ocular Anomalies (MCOA) is the collective name ascribed to heritable congenital eye defects in horses. Individuals homozygous for the disease allele (MCOA phenotype) have a wide range of eye anomalies, while heterozygous horses (Cyst phenotype) predominantly have cysts that originate from the temporal ciliary body, iris, and/or peripheral retina. MCOA syndrome is highly prevalent in the Rocky Mountain Horse but the disease is not limited to this breed. Affected horses most often have a Silver coat color; however, a pleiotropic link between these phenotypes is yet to be proven. Locating and possibly isolating these traits would provide invaluable knowledge to scientists and breeders. This would favor maintenance of a desirable coat color while addressing the health concerns of the affected breeds, and would also provide insight into the genetic basis of the disease. Identical-by-descent mapping was used to narrow the previous 4.6-Mb region to a 264-kb interval for the MCOA locus. One haplotype common to four breeds showed complete association to the disease (Cyst phenotype, n = 246; MCOA phenotype, n = 83). Candidate genes from the interval, SMARCC2 and IKZF4, were screened for polymorphisms and genotyped, and segregation analysis allowed the MCOA syndrome region to be shortened to 208 kb. This interval also harbors PMEL17, the gene causative for Silver coat color. However, by shortening the MCOA locus by a factor of 20, 176 other genes have been unlinked from the disease and only 15 genes remain

    The burden of childhood atopic dermatitis in the primary care setting: a report from the Meta-LARC Consortium

    Get PDF
    Background: Little is known about the burden of AD encountered in U.S. primary care practices and the frequency and type of skin care practices routinely used in children. Objectives: To estimate the prevalence of AD and allergic comorbidities in children 0-5 years attending primary care practices in the U.S. and to describe routine skin care practices used in this population. Design: A cross-sectional survey study of a convenience sample of children under the age of 5 attending primary care practices for any reason. Setting: Ten primary care practices in five U.S. states.Results: Amongst 652 children attending primary care practices, the estimated prevalence of ever having AD was 24 % (95% CI= 21-28) ranging from 15% among those under the age of one to 38% among those aged 4- 5 years. The prevalence of comorbid asthma was higher among AD participants compared to those with no AD, 12% and 4%, respectively (p less than 0.001). Moisturizers with high water:oil ratios were most commonly used (i.e., lotions) in the non-AD population, whereas moisturizers with low water:oil content (i.e. ointments) most common when AD was present. Conclusions: Our study found a large burden of AD in the primary care practice setting in the U.S. The majority of households reported skin care practices in children without AD that may be detrimental to the skin barrier such as frequent bathing and the routine use of moisturizers with high water: oil ratios. Clinical trials are needed to identify which skin care practices are optimal for reducing the significant risk of AD in the community

    Technology Requirements for a Square Meter, Arcsecond Resolution Telescope for X-Rays: The SMART-X Mission

    Get PDF
    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory

    The NEID precision radial velocity spectrometer: Commissioning of the Port Adapter

    Get PDF
    In October 2019, the NEID instrument (PI Suvrath Mahadevan, PSU) was delivered to the WIYN 3.5 m Telescope at Kitt Peak National Observatory. Commissioning began shortly after delivery, but was paused due to a COVID-19 imposed observatory shutdown in March 2020. The observatory has recently reopened and NEID commissioning has resumed. NEID is an optical (380-930 nm), fiber-fed, precision Doppler radial velocity system developed as part of the NN-EXPLORE partnership. While the spectrometer and calibration system are maintained in a highly controlled environment on the basement level of the WIYN, the NEID Port Adapter mounts directly to a bent-Cassegrain port on the telescope and is responsible for precisely and stably placing target light on the science fibers. Here we present a brief overview of the as-built Port Adapter and its sub-components. We then discuss preliminary on-sky performance compared to requirements as well as next steps as we complete commissioning

    Monte Carlo of Trapped Ultracold Neutrons in the UCNτ Trap

    Get PDF
    In the UCNτ experiment, ultracold neutrons (UCN) are confined by magnetic fields and the Earth’s gravitational field. Field-trapping mitigates the problem of UCN loss on material surfaces, which caused the largest correction in prior neutron experiments using material bottles. However, the neutron dynamics in field traps differ qualitatively from those in material bottles. In the latter case, neutrons bounce off material surfaces with significant diffusivity and the population quickly reaches a static spatial distribution with a density gradient induced by the gravitational potential. In contrast, the field-confined UCN—whose dynamics can be described by Hamiltonian mechanics—do not exhibit the stochastic behaviors typical of an ideal gas model as observed in material bottles. In this report, we will describe our efforts to simulate UCN trapping in the UCNτ magneto-gravitational trap. We compare the simulation output to the experimental results to determine the parameters of the neutron detector and the input neutron distribution. The tuned model is then used to understand the phase space evolution of neutrons observed in the UCNτ experiment. We will discuss the implications of chaotic dynamics on controlling the systematic effects, such as spectral cleaning and microphonic heating, for a successful UCN lifetime experiment to reach a 0.01% level of precision
    corecore