240 research outputs found

    Magnetic Control of Concentration Gradient in Microgravity

    Get PDF
    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions

    Observation of narrow fluorescence from doubly driven four-level atoms at room temperature

    Full text link
    Unusually narrow fluorescence peaks are seen from Rubidium-85 atoms under the action of two driving laser fields that are in a three dimensional molasses configuration. One of the lasers is held at a fixed detuning from the "cooling" transition, while the other is scanned across the "repumping" transitions. The fluorescence peaks are split into symmetric pairs, with the seperation within a pair increasing with the detuning of the cooling laser. For large detunings additional small peaks are seen. A simple model is proposed to explain these experimental observations.Comment: 8 pages, 4 figures, needs epl.cl

    Validation of a Computational Model for the SLS Core Stage Oxygen Tank Diffuser Concept and the Low Profile Diffuser - An Advanced Development Design for the SLS

    Get PDF
    The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were demonstrated by the test data

    Protocol for quantum-logical operations in an optical lattice using nonresonant absorption of photon pairs

    Get PDF
    Two nonidentical atoms may be entangled by inducing simultaneous cooperative absorption of a photon pair from a light field that is nonresonant to either atom in isolation. The atoms may be of two different elements, of different isotopes of the same element, or of a single isotope undergoing different transitions. Utilizing this cooperative process, we propose a protocol for a conditional operation with neutral atoms in an optical lattice. Current practical capabilities permit execution of the scheme

    Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    Get PDF
    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics

    Estimation of Higher-order Regression via. Sparse Representation Model for Single Image Super-resolution Algorithm

    Get PDF
    Super-resolution algorithms generate high-resolution (HR) imagery from single or multiple low-resolution (LR) degraded images. In this paper, an efficient single image super-resolution (SR) algorithm using higher-order regression is proposed. Image patches extracted from HR image will have self-similar example patches near its corresponding location in the LR image. A higherorder regression function is learned using these self-similar example patches via. sparse representation model. The regression function is based on local approximations and henceforth estimated from the localized image patches. Taylor series is used as local approximation of the regression function and hence the zeroth order regression co-efficient will yield the local estimate of the regression function and the higher-order regression co-efficient will provide the local estimate of the higher-order derivative of the regression function. The learned higher-order regression mapping function is applied to LR image patches to approximate its corresponding HR version. The proposed super-resolution approach is evaluated with standard test images and is compared against state-of-the-art SR algorithms. It is observed that the proposed technique preserves sharp high-frequency (HF) details and reconstructs visually appealing HR images without introducing andy artifacts

    An Example-Based Super-Resolution Algorithm for Selfie Images

    Get PDF
    A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details

    Hypoglycemic Effect of Macrocyclic Binuclear Oxovanadium (IV) Complex on Streptozotocin-Induced Diabetic Rats

    Get PDF
    Though vanadium complexes mimic the action of insulin, owing to their toxicity, research is still in progress for a new vanadium complex with maximum efficacy at low concentration and without any side effects. A novel macrocyclic binuclear oxovanadium complex was synthesized, its composition and structure were confirmed by spectral studies and its efficacy was studied in streptozotocin-induced diabetic rats over a period of 30 days. The oral administration of the complex normalizes the blood glucose level in the diabetic rats and also maintains normoglycemia after a glucose load. The biochemical studies revealed that the complex is not toxic to the system. The nontoxic nature of this complex may be due to the presence of the vanadyl ions in an intact form. The study highlights the nontoxic and hypoglycemic effects of the new macrocyclic binuclear oxovanadium complex

    Cold Flow Plume Entrainment Test Final Report NTF Test Number 2456

    Get PDF
    As part of the Space Shuttle Return to Flight (RTF) program, Marshall Space Flight Center (MSFC) performed computational fluid dynamics (CFD) analysis to define the velocity flowfields around the Shuttle stack at liftoff. These CFD predicted velocity flowfields were used in debris transport analysis (DTA). High speed flows such as plumes induce or 'entrain' mass from the surrounding environment. Previous work had shown that CFD analysis over-predicts plume induced flows. Therefore, the DTA would tend to 1) predict more debris impacts, and 2) the debris velocity (and kinetic energy) of those impacts would be too high. At a November, 2004 peer-review it was recommended that the Liftoff DTA team quantify the uncertainty in the DTA caused by the CFD's over prediction of plume induced flow. To do so, the Liftoff DTA team needed benchmark quality data for plume induced flow to quantify the CFD accuracy and its effect on the DTA. MSFC's Nozzle Test Facility (NTF) conducted the "Nozzle Induced Flows test, P#2456" to obtain experimental data for plume induced flows for nozzle flow exhausting into q quiescent freestream. Planning for the test began in December, 2004 and the experimental data was obtained in February and March of 2005. The funding for this test was provided by MSFC's Space Shuttle Propulsion Systems Integration and Engineering office
    corecore