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A selfie is typically a self-portrait captured using the front camera of a smartphone.Most state-of-the-art smartphones are equipped
with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camerawith limited
pixel resolution, the fine details in it are explicitly missed.This paper aims to improve the resolution of selfies by exploiting the fine
details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm.HR images captured by rear
camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The
MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively
used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves
image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and
effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed
algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without
introducing any counterfeit fine details.

1. Introduction

With the advent of smartphones having sophisticated cam-
era technologies and integrated online social networking
services, selfies gain popularity among social media users.
Selfie is typically a photograph that one has taken of oneself,
using the front camera of a smartphone. Most conventional
smartphones have two cameras, a primary rear camera and
a secondary front camera. As the front camera is mainly
intended for video conference, it has limited pixel resolution
compared with rear camera. For instance, Apple’s iPhone 6
has a 1.2-megapixel (MP) front camera which is very much
limited compared with primary 8MP rear camera in terms
of pixel resolution. Though the front camera is designed for
video conference, it is often used by users to capture selfies.
Selfies are low-resolution (LR) images, as the fine details in it
are explicitly missed due to hardware limitation of the front
camera. Despite the fact that selfies are self-portraits which
essentially comprise facial information of the user, it is equally

important to proclaim the importance of the background
information in it.The vital background information can be an
interesting scene, astounding location, or a group of friends.
Selfies are widely shared via social media; hence the volume
of such images is burgeoning and there is a need to improve
the quality of these images.

Super-resolution (SR) algorithm [1] aims to generate
high-resolution (HR) image from single or ensemble of LR
images. Example-based SR algorithms [2–4] enhance the
resolution of LR image by learning the high frequency (HF)
details from LR-HR training examples. The priori which
defines the relation between the LR and HR images could be
learned from the training image-pairs. The learned image-
pair priori [5] can be used to generate HR image from the
observed LR image. Conventional example-based SR algo-
rithms can be characterized into two categories with respect
to the way image-pair priori is learned from the training
set, namely, the implicit- and explicit-priori based methods.
The implicit-priori based algorithms [6–8] represent the
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priori directly from the training image-pairs. Most of the
traditional 𝐾-nearest neighbor algorithms [6, 9] are implicit
and are computationally expensive to search the 𝐾-nearest
neighbors to estimate theHR image.The explicit-priori based
algorithms either use a dictionary [10–12] or a regression
function [13, 14] to map the correspondence between the
LR-HR image-pairs. Dictionary based algorithms [15, 16]
represent the priori between LR and HR image-pairs by a
LR-HR dictionary pair. In regression based approaches, the
regression function which maps the LR and HR image-pairs
can be mapped by either a supervised [13] or semisupervised
[17] learning process. The time required to train explicit
image-pair priori is generally high. Therefore, conventional
example-based SR algorithms are not suitable for super-
resolving selfies.

Themain challenge in super-resolving LR selfie is to learn
the image-pair priori which maps the LR to HR image-level
correspondence with minimum computational complexity.
As HR images captured by the rear camera preserve fine
details, it can be used to learn a priori to super-resolve selfies.
Most of the conventional example-based SR algorithms are
implemented by vectorizing the training image-pairs [9, 15].
By vectorizing, the image-level information between image-
pairs is lost due to structural disparity. Hence the vector-
based priori which relates the LR-HR image-pairs is not effec-
tive [18]. To overcome this difficulty, a novel matrix-based
priori is proposed by Tang and Yuan [18] to model the image-
pair priori. However, thematrix-based priori is derived based
on the assumption that most of the image patches extracted
from natural training images are full rank [18]. Though this
assumption is valid for natural images, patches extracted
from real-life images with facial information and smooth
textures are intuitively rank deficient.

This paper endeavors to improve the spatial resolution
of selfies by efficiently learning an optimal matrix-value
regression (MVR) operator from LR-HR image patch-pairs
extracted from training samples captured by rear camera of
the smartphone. The training image patch-pairs are factor-
ized by singular value decomposition (SVD) to accommodate
rank deficient patch-pairs in the learning process. The MVR
operator explicitly models the correspondence between the
LR- and HR-training image patches to super-resolve the LR
selfies. As the proposedMVR algorithm avoids vectorization,
it preserves the structural similarity of training image patches
and enjoys image-level information within them. The com-
putational cost of the proposed algorithm is greatly reduced
by optimally selecting a larger patch-size in both training and
recovering phase as it carries significant image-level informa-
tion. The main contributions of this paper are as follows:

(i) A fast selfie SR algorithm: LR selfies are super-resolved
by a fast example-based algorithm using an optimal
MVR operator learned from HR training images
captured by rear camera of the smartphone.

(ii) Effective and efficient MVR operator: The computa-
tional cost to learn the MVR operator is minimum.
Also, it faithfully preserves the structural similarity
between training image patch-pairs, which makes the
MVR operator effective and efficient.

The remainder of the paper is organized as follows. A brief
description on image-pair analysis methods is reported in
Section 2. In Section 3, the proposed SR methodology for
selfie images is explained in detail. In Section 4, experimental
evaluations are reported to compare the performance of the
proposed method and finally Section 5 concludes the paper.

2. Brief Description on Image-Pair
Analysis Methods

Example-based super-resolution algorithms estimate the fine
details that are missed in LR images by learning the corres-
pondence between training image-pairs. The process of
example-based super-resolution is summarized in Figure
1. Effective image-pair analysis methods are required by
example-based SR algorithms to learn an image-pair regres-
sion operator, which defines a relation between LR-HR
image-pairs. Training image-pair typically consists of a HR
image and its corresponding synthetically generated LR
image. Well learned image-pair regression operator provides
significantly precise correspondence between LR-HR patch-
pairs and could be effectively used as a global priori in many
inverse image processing tasks [19, 20]. Example-based SR is
an ill-posed problem and requires sophisticated image-pair
analysismethods [18] to learn the suitable regression operator
from training examples.

Image-pair analysis methods are classified as vector-
based andmatrix-basedmethods. In vector-based image-pair
analysis methods [15, 16], LR-HR image patch-pairs are rep-
resented as feature vectors and its correspondence is learned
with an explicit vector-based regression operator. Though
image patch-pairs are faithfully represented as vectors in
vector-based methods, its image-level structural information
is lost due to vectorization [21, 22]. Therefore the problem of
image-pair analysis is converted to a problem of vector-pair
analysis. To avoid structural disparity and preserve image-
level information within patch-pairs, a few matrix-based
image-pair analysis methods are suggested [18, 23]. In these
methods [18, 23], a linear matrix-based regression operator is
learned to map the global dependency [18] between LR-HR
patch-pairs.

2.1. Matrix-Value Regression (MVR) Operator. An image
patch-pair denoted as 𝑠 = (𝑥, 𝑦) ∈ R𝑝×𝑝 defines a linear
matrix-value regression (MVR) operator𝑀 : ∈ R𝑝×𝑝 such
that

𝑦 = 𝑀 ⋅ 𝑥. (1)

If the image patch-pairs are assumed to be full rank matrices,
then the MVR operator𝑀 can be obtained as

𝑀 = 𝑦𝑥
−1
, (2)

where 𝑥−1 refers to the matrix inverse of 𝑥.
The MVR operator 𝑀 profoundly depends on the full

rank condition of its constituent patch-pairs to compute
the matrix inverse. For rank deficient matrices, computing
inverse is not stable. Hence, in recent matrix-based image-
pair analysis methods [18, 23, 24] the patch-pairs are assumed
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Figure 1: Overview of example-based super-resolution.

Table 1: Ratio of rank deficient patches.

Patch-size/test image Image 1 Image 2 Image 3 Image 4 Image 5 Average
3 × 3 0.6314 0.4290 0.6578 0.5808 0.4968 0.5591
5 × 5 0.6935 0.5177 0.7276 0.6520 0.5649 0.6311
7 × 7 0.6850 0.4866 0.7217 0.6305 0.5439 0.6135
9 × 9 0.6423 0.4334 0.6779 0.5917 0.4741 0.5638
11 × 11 0.5690 0.3268 0.6429 0.5336 0.4039 0.4952

to be full rank matrices. However, the main difference
between a selfie image and general image is with respect to
its information content. Typical selfie images essentially carry
the facial information of the user that contains a foreground
with vivid facial features of similar textures and a background
with less complex information. However, general images
will carry any natural information having more complex
structures with random patterns and textures [25]. Image
patches extracted from random natural images are intuitively
assumed to be full rank [18] due to complex structures in it.
Though this assumption is valid (ideally producing 5% rank
deficiency) for natural images, image patches extracted from
selfie images are intuitively rank deficient. To validate this,
an experiment was carried out with 100000 patches extracted
from training images and it is observed that approximately
50% of the patches are rank deficient as shown in Table 1.
This is attributed to the similar texture details present in
the training samples. Furthermore, this percentage increases
for larger patch-size as the patch coherence becomes higher.
To accommodate rank deficient patch-pairs to represent the
image-pair priori, matrix inverse is computed by factorizing
the patch-pairs with singular value decomposition.

2.2. Similarity Measure via MVR Operator. The linear MVR
operator𝑀preciselymodels the correspondence between the
image patch-pairs 𝑠𝑖 = (𝑥, 𝑦)

𝑛

𝑖=1
∈ R𝑝×𝑝. Therefore from (1),

we get

𝑀 ⋅ 𝑥 = (𝑦𝑖𝑥
−1

𝑖
) 𝑥 = 𝑦𝑖 (𝑥

−1

𝑖
𝑥) = 𝑦. (3)

If a LR test patch 𝑥 is identical with 𝑖th patch 𝑥𝑖 in the
training set, then (𝑥−1

𝑖
𝑥) becomes an identity matrix. The

term (𝑥
−1

𝑖
𝑥) can be observed as a patch-similarity measure

which defines the mutual information between 𝑥 and 𝑥𝑖.
From (3), the HR estimation 𝑦 of the LR test image 𝑥 can be
found effectively using the MVR operator.

2.3. Computational Efficiency via MVR Operator. The MVR
operator significantly reduces the computational complexity
by reducing the number of variables required to represent the
operator. As the image patch-pairs are matrices of size 𝑝 × 𝑝,
the image-pair regression operator will be a matrix of size
𝑝×𝑝.Therefore it is required to have 𝑝2 variables to represent
thematrix-based regression operator.Nevertheless, in vector-
based approaches, as image patches are column vector of size
𝑝
2
× 1, the regression operator that maps the two vectors

should be a matrix of size 𝑝2 × 𝑝2 and hence requires 𝑝4
variables.

3. The Proposed Selfie
Super-Resolution Methodology

The overview of the proposed selfie SR methodology is
illustrated in Figure 2.The example-based selfie SR algorithm
consists of a training phase (performed offline), where an
optimal MVR operator is learned from a set of image
patch-pairs extracted from the training image set and a
reconstruction phase performing super-resolution on the test
selfie image using the learnedmatrix-value regression (MVR)
operator from the previous phase.

3.1. Training Set Construction. The training phase begins by
collecting a few HR images {𝑌𝑖

ℎ
∈ R𝑚×𝑛}, captured by the
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Figure 2: Overview of proposed selfie super-resolution algorithm.

rear camera of the smartphone, which are considered as HR
examples. Each of these HR images is downscaled by a scale-
factor 𝑠. These downscaled images form the corresponding
LR images {𝑌𝑖

𝑙
∈ R(𝑚/𝑠)×(𝑛/𝑠)}. To avoid resolution disparity,

the LR images are upscaled to the size of the target HR image
by an interpolation operator 𝑄 : R(𝑚/𝑠)×(𝑛/𝑠) → R𝑚×𝑛 and are
denoted by {𝑋𝑖

𝑙
∈ R𝑚×𝑛}. The set of images in 𝑆 = {𝑌𝑖

ℎ
, 𝑋
𝑖

𝑙
}

forms the training image-pairs. Let 𝑥 and 𝑦 denote image
patches of size (𝑝×𝑝) extracted from𝑋𝑙 and 𝑌ℎ, respectively.
For every image patch 𝑦 extracted from the HR image 𝑌ℎ
centered at its origin (𝑖, 𝑗), there exists a self-similar example
patch [25] 𝑥 around its origin (𝑖𝑠, 𝑗𝑠) in the LR image 𝑋𝑙,
where 𝑖𝑠 = [𝑖/𝑠+0.5] and 𝑗𝑠 = [𝑗/𝑠+0.5].The correspondence
between 𝑦 and 𝑥 is learned by an optimal MVR operator.

3.2. Algorithm to Learn Optimal MVR Operator. Let the
training patch-pairs be denoted as 𝑆𝑛 = (𝑥𝑖, 𝑦𝑖)

𝑛

𝑖=1
∈ R𝑝×𝑝,

where (𝑥𝑖, 𝑦𝑖) is low- and high-resolution patch-pairs of size
𝑝 × 𝑝 and 𝑛 is the number of training patch-pairs. Let 𝑀 :

𝑋 󳨃→ 𝑌 be a MVR operator mapping the low-resolution
image space to the high-resolution image space.

The optimal MVR operator 𝑀∗ is subsequently learned
from the training set 𝑆𝑛 using the least square regression
model given by

𝑀
∗
= arg min
𝑀

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑦𝑖 −𝑀𝑥𝑖
󵄩󵄩󵄩󵄩

2

𝐹
, (4)

where ‖ ⋅ ‖𝐹 is the Frobenius norm. Let 𝐹𝑖(𝑀) be the cost
function such that (4) becomes

𝑀
∗
= arg min
𝑀

𝑛

∑

𝑖=1

𝐹𝑖 (𝑀) , (5)

where

𝐹𝑖 (𝑀) =
󵄩󵄩󵄩󵄩𝑦𝑖 −𝑀𝑥𝑖

󵄩󵄩󵄩󵄩

2

𝐹

=
󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

2

𝐹
− 2 ⟨𝑦𝑖,𝑀𝑥𝑖⟩𝐹

+ ⟨𝑀𝑥𝑖,𝑀𝑥𝑖⟩𝐹

=
󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

2

𝐹
− 2 ⟨𝑦𝑖𝑥

𝑇

𝑖
,𝑀⟩
𝐹
+ ⟨𝑀𝑥𝑖𝑥

𝑇

𝑖
,𝑀⟩
𝐹
.

(6)

To obtain the optimal MVR operator, the target function
is given by

𝐹 (𝑀) =

𝑛

∑

𝑖=1

𝐹𝑖 (𝑀)

=

𝑛

∑

𝑖=1

(
󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

2

𝐹
− 2 ⟨𝑦𝑖𝑥

𝑇

𝑖
,𝑀⟩
𝐹
+ ⟨𝑀𝑥𝑖𝑥

𝑇

𝑖
,𝑀⟩
𝐹
)

= (

𝑛

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑦𝑖
󵄩󵄩󵄩󵄩

2

𝐹
− 2⟨

𝑛

∑

𝑖=1

𝑦𝑖𝑥
𝑇

𝑖
,𝑀⟩

𝐹

+⟨𝑀

𝑛

∑

𝑖=1

𝑥𝑖𝑥
𝑇

𝑖
,𝑀⟩

𝐹

) = 𝐾0 − 2 ⟨𝐾1,𝑀⟩𝐹

+ ⟨𝑀𝐾2,𝑀⟩𝐹
,

(7)

where 𝐾0 = ∑
𝑛

𝑖=1
‖𝑦𝑖‖
2

𝐹
, 𝐾1 = ∑

𝑛

𝑖=1
𝑦𝑖𝑥
𝑇

𝑖
, and 𝐾2 = ∑

𝑛

𝑖=1
𝑥𝑖𝑥
𝑇

𝑖

are the auxiliary matrices.
The optimal MVR operator 𝑀∗ can be deduced by

imposing condition for minimization on (7); hence

𝜕

𝜕𝑀
𝐹 (𝑀) = 0,

𝜕

𝜕𝑀
(𝐾0 − 2 ⟨𝐾1,𝑀⟩𝐹

+ ⟨𝑀𝐾2,𝑀⟩𝐹
) = 0.

(8)

Therefore, the optimal MVR operator is given by

𝑀
∗
= 𝐾1𝐾

−1

2
. (9)

The inverse of the auxiliary matrix 𝐾2 is computed by
factorizing 𝐾2 with SVD; thus 𝐾2 = 𝑈Σ𝑉

𝑇, where 𝑈 and
𝑉 are orthogonal matrices and Σ is a diagonal matrix with
singular values. Thus

𝑀
∗
= 𝐾1 (𝑉Σ

−1
𝑈
𝑇
) . (10)

The optimal MVR operator𝑀∗ shown in (10) explicitly
represents the image-level correspondence between the low-
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Input: Training image patch-pairs 𝑆𝑛 = (𝑥𝑖, 𝑦𝑖)
𝑛

𝑖=1
∈ R𝑝×𝑝

Output: Optimal Matrix-value operator𝑀∗
Steps:

(1) Calculate the auxiliary matrices𝐾1 and 𝐾2
𝐾1 =

𝑛

∑

𝑖=1

𝑦𝑖𝑥
𝑇

𝑖

𝐾2 =

𝑛

∑

𝑖=1

𝑥𝑖𝑥
𝑇

𝑖

(2) Factorize the auxiliary matrix 𝐾2 using SVD
𝐾2 = 𝑈Σ𝑉

𝑇

(3) Find the inverse of auxiliary matrix 𝐾2
𝐾
−1

2
= 𝑉Σ

−1
𝑈
𝑇

(4) Find the optimal Matrix-value operator
𝑀
∗
= 𝐾1 (𝑉Σ

−1
𝑈
𝑇
)

Output: Optimal Matrix value operator

Algorithm 1: Algorithm to learn MVR operator.

and high-resolution image patch-pairs. The MVR operator
resulting from the training phase is used to reconstruct the
fine details from the low-resolution selfie images. The pro-
cedure to deduce optimal MVR operator is summarized in
Algorithm 1.

3.3. Algorithm for SR Reconstruction. In the reconstruction
phase, LR selfies captured by the front camera are super-
resolved using the MVR operator learned from Algorithm 1.
In addition, the MVR operator is adapted to learn from the
test selfie itself by a bootstrapping approach [16]. The given
test selfie is assumed to be theHR image and the scaled-down
version is its LR counterpart. The correspondence between
the LR-HR patch-pairs extracted from the bootstrapped
image-pairs is used to update the optimalMVR operator.The
test selfie𝑇lr is interpolated by a factor 𝑠with an interpolation
operator 𝑄. Nonoverlapping image patches of size 𝑝 × 𝑝 are
extracted from the interpolated test image. This collection of
low-resolution patches is represented as 𝑇lr = {𝑡

𝑖

lr}
𝑛

𝑖=1
. Every

test LR image patch in set 𝑇𝑠 is super-resolved using the
optimal MVR operator, such that

𝑡hr = 𝑀
∗
𝑡lr. (11)

The super-resolved test image patches are merged to
form the super-resolved high-resolution image 𝑇hr. The steps
involved in the reconstruction phase are summarized in
Algorithm 2.

4. Results and Discussions

The proposed algorithm is evaluated for its effectiveness and
efficiency by conducting both qualitative and quantitative
experiments on various test images shown in Figures 3 and
4. The test images are super-resolved using state-of-the-
art approaches such as Yang et al.’s sparse representation
based algorithm [15], Kim et al.’s sparse regression algorithm
[9], Dong et al.’s nonlocal autoregressive modeling (NARM)
algorithm [26], and He et al.’s Gaussian process regression

algorithm [27] and their performance metrics are estimated
and compared. Among the algorithms chosen for compar-
ison, Yang et al.’s, Kim et al.’s, and the proposed algorithm
are training-based algorithm, whereas Dong et al.’s and He
et al.’s algorithm are training-free algorithm. The results of
the aforementioned algorithms are obtained using the source
codes available at the author’s homepage.

4.1. Experimental Setup. In the experiments carried out, test
images shown in Figures 3 and 4 are used as LR images.
Though the algorithm is proposed to super-resolve LR selfie
images, few standard test images (shown in Figure 3) such
as Barbara, girl, and Lena are used to fairly compare the
performance of the proposed algorithm with other state-of-
the-art SR algorithms.

To evaluate the effectiveness of the proposed algorithmon
selfies, various test selfies captured by different smartphones
such as iPhone 4s, iPhone 6, and Nexus 5 with diverse
specifications are collected. Figure 4 shows the selfie test
images used for comparison, in which images (#1) and (#2)
show the selfie test images captured by Nexus 5 with a
resolution of 2MP and (#3) and (#4) depict the selfie test
image captured by iPhone 4s with a pixel resolution of 1MP.
Images (#5) and (#6) represent the selfie test image captured
by iPhone 6 with a spatial resolution of 1.2MP and (#7) shows
the famous Oscar selfie image (courtesy Google image). The
training dataset is generated from a collection of HR images
captured by the rear camera of the smartphone offline. The
training dataset is limited to 50 HR images with different
poses, exposures extracted from the root directory of the
smartphone. However, the number of training examples can
be extended by addingmore examples to the training set.The
HR images captured by Nexus 5 have a pixel resolution of
12MP and iPhone 6 and iPhone 4s have a pixel resolution of
8MP. Sample training HR images are shown in Figure 5.

The training and testing color images are converted to
YCbCr channel and only the luminance channel is considered
for super-resolution as it is sensitive to human eye. The LR
images are synthetically generated by downsampling the test
images shown in Figures 3 and 4 using bicubic interpolator.
The downsampled LR images are resized to the size of target
HR image and are contiguously blocked into nonoverlapping
patches of size 27 × 27. The LR test images are super-resolved
by a scale-factor of 𝑠 = 2, 3, and 4. LR-HR training image-
pairs are generated with the same scale-factor 𝑠. All the
experiments were carried out using Matlab R2012 on an Intel
core i5-2400@2.7GHz processor with 4GB RAM.

4.2. Experimental Analysis

Effectiveness. Qualitative and quantitative evaluation are car-
ried out to assess the effectiveness of the proposed algorithm.
Qualitative evaluation of SRmethods relies on a few attributes
of the reconstructed image such as sharpness, naturalness,
and granularity [28]. The sharpness of an image is assessed
based on the HF details it preserves. The naturalness of
an image is affected by the artifacts present in it. Various
artifacts such as ghosting, ringing, jagging, and staircase
artifacts generally affect the quality of an image. A visual
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Input: Optimal Matrix-value operator𝑀∗, LR selfie test image, 𝑇lr
Output: Super-resolved selfie image 𝑇hr
Steps:

(1) Construct non overlapping patches of size 𝑝 × 𝑝 from test selfie image
𝑇lr 󳨀→ 𝑇𝑠 = {𝑡

𝑖

lr}
𝑛

𝑖=1

(2) For every test image patch 𝑡𝑖lr, find the super-resolved patch
𝑡hr = 𝑀

∗
𝑡lr

(3) Merge the super-resolved patches {𝑡hr}
𝑛

𝑖=1

𝑇hr = {𝑡hr}
𝑛

𝑖=1

Output: Super-resolved selfie image

Algorithm 2: Algorithm for SR reconstruction.

(a) (b) (c)

Figure 3: Standard test images.

(#1) (#2) (#3) (#4)

(#5) (#6) (#7)

Figure 4: Test selfie images.
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Figure 5: Sample training images.

(a) (b) (c) (d) (e) (f)

Figure 6: Visual comparison for the Barbara image with other state-of-the-art SR approaches for 2x magnification.

comparison is made to assess the fidelity of the proposed
algorithm qualitatively. The effectiveness of the proposed
method is quantitatively evaluated based on a few objective
performancemetrics such as rootmean square error (RMSE),
peak signal-to-noise ratio (PSNR), and structural similarity
(SSIM) index [29]. A high PSNR score indicates that the
scaled-up image is free fromdistortions and effectively recon-
structs the HF details. Similarly, a high SSIM value (typically
1) implies that the scaled-up image has a very similar struc-
ture to its ground truth. For fair comparison, the standard
test images shown in Figure 3 are super-resolved using the
proposedmethod and are comparedwith the aforementioned
algorithms. Table 2 summarizes the quantitative comparison
of various SR algorithms on test images for 3x magnification.

Figure 6 shows the 2x visual comparison for the standard
test imageBarbara. Figure 6(a) shows the ground truth and its
corresponding scaled-up local image and Figure 6(b) shows
the LR image and its corresponding local image. Figures
6(c)–6(e) depict the super-resolved image and its local image
by Yang et al.’s algorithm, Kim et al.’s algorithm, and Dong
et al.’s algorithm. Figure 6(f) shows the SR image and its
corresponding local image super-resolved by the proposed
MVR algorithm. In Figure 6(c), the texture on the table
cloth is blurred when compared with ground truth. Though
the stripes in the table cloth are sharp in Figure 6(d), it
is not the same pattern as in the ground truth as the
fine details in the table cloth are not well preserved. Dong
et al.’s method reconstructs the texture as in the ground
truth; however it introduces ringing and jagging artifacts, as
observed in Figure 6(e), and accordingly has low PSNR value.
As observed from Figure 6(f), it is evident that the proposed

algorithm preserves sharp texture details as in ground truth
and is free from artifacts.

For visual comparison on test selfies, 3x magnification on
test selfie images is carried out. Figure 7 depicts the qualitative
visual comparison for five test selfie images. Figure 7(a)
depicts the test LR selfie image. Figures 7(b)–7(e) depict the
SR images reconstructed by Yang et al.’s, Kim et al.’s, Dong et
al., and He et al.’s algorithm. Figure 7(f) shows the proposed
SR image. The local region of interest (ROI) is highlighted in
red boxes and is presented in the bottom left corner of the
image. In Yang et al.’s SR based on sparse representation [15]
model, two coupled dictionaries are trained simultaneously
from random raw image patches. Based on a dictionary pre-
trained from thousands of natural images, Yang et al.’smethod
seems to produce natural-looking results. Though Yang’s
algorithm faithfully reconstructs natural-looking images, it
can be observed from Table 2 that the objective measures
are not the best among other comparative algorithms. This
is because the fine details in the image are not well preserved
due to the fact that a universal dictionary used in this method
fails to represent complex structures accurately. For instance,
the spectacle frame in the ROI of test image (#1) shown in
Figure 7(b) looks sharp and natural but for the ROI of test
image (#4) in Figure 7(b), the structure of the letters is not
preserved. Due to the fact that a natural image priori is used
to postprocess the SR image, Kim et al.’s [9]method effectively
reproduces more visually appealing images. It preserves
minute details (the eyelash in the ROI of test image (#3) in
Figure 7(c)) in the reconstructed image.The PSNR and SSIM
value for Kim et al.’s method is better than other comparative
algorithms, as a postprocessing with an image edge priori
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(a) (b) (c) (d) (e) (f)

Figure 7: Visual comparison for test selfies with state-of-the-art SR algorithms for 3x magnification: (a) test selfie images, (b)–(e)
reconstructed SR images by Yang et al. algorithm, Kim et al. algorithm, Dong et al. algorithm, He et al. algorithm, and proposed algorithm,
respectively.
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Table 2: Comparison of PSNR/SSIM with state-of-the-art SR algorithms for different test images with 3x magnification.

Test image Yang et al. Kim et al. Dong et al. He et al. The proposed
Barbara 26.00/0.8847 26.36/0.8934 24.40/0.8341 25.72/0.8711 27.47/0.9430
Lena 30.69/0.9421 32.67/0.9514 30.13/0.9146 31.28/0.9122 33.27/0.9763
Selfie (#1) 29.21/0.9935 30.08/0.9962 27.92/0.9784 28.51/0.9917 31.69/0.9960
Selfie (#2) 28.20/0.9885 28.80/0.9922 26.87/0.9558 27.39/0.9825 30.78/0.9928
Selfie (#3) 26.01/0.9365 26.96/0.9486 24.39/0.8975 25.34/0.9226 27.87/0.9727
Selfie (#4) 28.55/0.9241 29.19/0.9309 26.17/0.8682 28.58/0.9148 30.03/0.9603
Selfie (#5) 31.45/0.9132 32.28/0.9309 29.87/0.8934 30.21/0.9021 32.02/0.9402

Table 3: Comparison of computational efficiency of the proposed algorithm with various SR algorithms.

Algorithm Training time Recovery time (in seconds)
Lena Test image (#1) Test image (#3) Test image (#5)

Dong et al. — 352.6 468.4 186.2 261.4
He et al. — 3360.3 3960.2 2460.8 3123.4
Yang et al. >12 hours 11.8 24.1 18.2 29.6
Kim et al. ≈24 hours 32.6 41.8 26.3 38.1
Proposed 49 s 4.2 2.6 1.8 2.8

is carried out on the reconstructed image. Nevertheless, for
images with complicated edges, the edge priori tends to
introduce ringing artifacts along the corner of edges, which
reduces the PSNR and SSIM value. For example, artifacts
can be visualized in the fan rails of ROI of test image (#5)
in Figure 7(c). In Dong et al.’s [26] method, overly smooth
HF details are recovered as in the ROI of test image (#2) in
Figure 7(d). Also, it is prone to introduce artifacts as it can be
visualized in the ROI of test image (#3) in Figure 7(d). Due
to the artifacts in the reconstructed image, the average PSNR
and SSIM value is lesser for Dong et al.’s method. It can be
observed that the characters in the ROI of test image (#4) in
Figure 7(e) are not faithfully reconstructed by He et al.’s [27]
Gaussian process regression method. On the contrary, the
proposedmethodpreserves the sharp details andfine textures
in most of the images without affecting the naturalness of
the image. Also it is observed that the proposed method
provides more photorealistic details as it does not introduce
any counterfeit fine details. The effectiveness of the proposed
algorithm is quantitatively validated from the PSNR and
SSIM value observed from Table 2. The proposed method
achieves the best PSNR and SSIM value which indicates that
the proposed algorithm reconstructs the LR imagewithmini-
mal distortions and a high SSIM value corroborates the effec-
tiveness of the structural similarity which has been preserved
by the proposed matrix-based regression algorithm. The
proposed method performs better than other state-of-the-art
SR approaches as it avoids vectorization of image patch-pairs
during training phase of theMVR operator, which intuitively
preserves structural similarity and image-level information
within patch-pairs. Also, as theMVR operator is trained with
HR images captured by the rear camera of the smartphone it
effectively corresponds to the relation between LR-HR patch-
pairs, thereby improving the performance of the proposed
algorithm. For instance, in the highlighted ROI of test image
(#1) shown in Figure 7(f), the fine details in the frame of the

spectacle are well preserved. Similarly, the shadow of the pole
in the ROI of test image (#2) is very clear. In the ROI of
test image (#3) shown in Figure 7(f), very fine details in eye
such as eyebrow and eyelash are sharp and the HF details are
preserved. Also, it is observed that the structure of letters in
the ROI of test image (#4) in Figure 7(f) is preserved when
compared with other state-of-the-art approaches.

Efficiency. The efficiency of the proposed matrix-based SR
algorithm is compared with aforementioned algorithms on a
personal computer with Intel core i5-2400@2.7GHz proces-
sor with 4GB RAM.

The computation time required to train and recover
the images is reported in Table 3. Among the training-free
algorithms (Dong et al. and He et al. algorithms), the average
CPU time taken to recover the SR image byHe et al.’sGaussian
process regression algorithm [27] is significantly high as
the source code available in the author’s homepage is not
optimized.TheNARMbased SR algorithmbyDong et al. [26]
takes approximately 3∼6 minutes to recover the HR image
with a magnification factor of 𝑠 = 3. It is witnessed from
Table 3 that the training time required by training-based SR
algorithms such as Yang et al. and Kim et al. algorithm is
significantly high, as it has to extract training image patches
from an extensive dataset to train an universal dictionary.
Owing to the fact that image patches are represented asmatri-
ces and large patches (typically of size 27×27) are used in the
proposed MVR algorithm, the computational time is signi-
ficantly less (<a minute), thereby outperforming other state-
of-the-art approaches. The experimental results presented
in Table 3 reveal that the proposed MVR algorithm can be
efficiently applied to super-resolve LR selfie images with
minimum computational expense.

4.3. Influence of Patch-Size. The size of image patch used
in training and recovering phase significantly influences the
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 8: Visual comparison on test selfie (#7) for various patch-sizes: (a) test selfie (#7), (b)–(g) magnified ROI of test selfie (#7) super-
resolved with patch-sizes 3 × 3, 11 × 11, 19 × 19, 27 × 27, 35 × 35, and 43 × 43, respectively.

Table 4: Quantitative comparison on test selfie (#7) for various
patch-sizes.

Patch-size 3 × 3 11 × 11 19 × 19 27 × 27 35 × 35 43 × 43

PSNR 31.02 31.13 31.22 31.43 31.32 31.31

performance of the algorithm. Intuitively, selecting a larger
patch-size may produce overly smooth results whereas a
small patch tends to produce undesired artifacts in smooth
areas of the image. In addition, computational cost of the
algorithm is influenced by patch-size. Hence a performance
evaluation based on variation in patch-size for the proposed
algorithm is carried out and depicted in Figure 5. The
magnified ROI highlighted in red box is compared for visual
fidelity. In addition, a quantitative analysis based on PSNR
for different patch-size is reported in Table 4. The size of
training patch is varied from 3 × 3 to 43 × 43 with a
step size of 8 pixels. For a small patch-size of 3 × 3 as in
Figure 8, the freckles near the eye are relatively blurred and
are quantitatively validated in Table 4. The qualitative and
quantitative performance of the proposed algorithm increase
as the patch-size is increased and are maximum for a patch-
size of 27 × 27 as shown in Figure 8 and Table 4, respectively.
For instance, it is perceived that the freckles near the eyes
are crisper comparatively and hence the eyes look sharper
and are natural-looking for a patch-size of 27 × 27 as in
Figure 8(e). Due to the fact that the image-level informa-
tion between patches is preserved by the proposed matrix-
based regression algorithm, the performance of the proposed
algorithm is better for larger patch-sizes. However, too large
patch-size will reduce the performance of the algorithm as it
is more complex to utilize the image-level informationwithin
them.

4.4. Influence of Scale-Factor. The test images are magnified
by a scale-factor 𝑠 and its performance evaluation is carried
out. For visual comparison, test image (#6) is upscaled by
a factor of 2x, 3x, 4x, and 5x by the proposed algorithm
and is depicted in Figure 9. The ROI considered for visual
evaluation is the texture of the shirt. It is observed from
Figure 9 that the texture details are well preserved for 2x

Table 5: Quantitative comparison on test selfie (#6) for various
scale-factors 𝑠.

Scale-factor 𝑠 = 2 𝑠 = 3 𝑠 = 4 𝑠 = 5

PSNR 28.92 27.66 27.31 24.80

magnification. For 3x magnification, the proposed algorithm
is able to preserve the fine texture details as the interleaved
pattern in the shirt is clear to visualize. For 4x magnification,
though the pattern in the ROI is visible, the fine details in
it are lost. It is also observed that ringing artifacts along the
edges affect the quality of the image. Furthermore, the texture
details are lost for a magnification factor of 5x.The results are
quantified by its PSNR values tabulated in Table 5.

4.5. Influence of Training Dataset. Training images captured
by the rear camera of the smartphone can serve as fine
exemplar to train the MVR operator. The performance of
the proposed algorithm can be influenced by the training
dataset used to train the MVR operator. To validate this,
a performance evaluation based on variation in dataset is
carried out. It is observed that the training images from
the same device as the test image lead to better results
than when the training and testing images are taken from
different devices. For visual comparison, test selfie (#2) is
super-resolved by a factor of 3x using the MVR operator
trained by four different datasets and is depicted in Figure 10.
The training dataset TR1 has a collection of random natural
images as example images. Similarly, training datasets TR2,
TR3, and TR4 have collection of example images captured
by the rear camera of iPhone 4s, iPhone 6, and Nexus 5,
respectively. FromFigure 10(e), it is observed that the freckles
beneath the eye are sharp and crisp for the image super-
resolved using the MVR operator trained with TR4. This is
due to the fact that both training examples in TR4 and the test
selfie (#2) are captured by the same smartphone. As the rear
camera of the smartphone is used by the same user, example
images captured from the rear camera tend to possess similar
low-level image features such as texture, granularity, and
exposure as in the selfie image captured by front camera. In
addition to this, the facial information contained in the selfies
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(a) (d) (e)

(b) (c)

Figure 9: Visual comparison on test selfie (#6) for various scale-factor 𝑠 (a) test selfie (#6), (b)–(e) magnified ROI of test selfie (#6) super-
resolved with scale-factors 2x, 3x, 4x, and 5x, respectively.

(a) (d) (e)

(b) (c)

Figure 10: Visual comparison on test selfie (#2) for various training datasets (TR): (a) test selfie (#2), (b–e) magnified ROI of test selfie (#2)
super-resolved with training datasets TR1, TR2, TR3, and TR4, respectively.

Table 6: Quantitative comparison on test selfie (#2) for various
training datasets.

Training dataset TR1 TR2 TR3 TR4
PSNR 30.48 30.57 30.55 30.78

can possibly reoccur in the training set as it is captured by the
same user. This self-similarity improves the interdependency
between the images and results in a more robust and efficient
MVR operator.The results are quantified by the PSNR values
tabulated in Table 6.

5. Conclusion

In this paper, a fast example-based SR algorithm for super-
resolving LR selfie image is presented. The proposed SR
algorithm learns an optimal matrix-value regression (MVR)

operator from a set of training samples captured from the
rear camera of a smartphone. The relation between LR-HR
training patch-pairs is established by an optimal MVR oper-
ator. It preserves structural similarity across training patch-
pairs and effectively represents the image-level information of
the training image patch-pairs. It is used effectively to super-
resolve clean LR selfie image captured by the front camera
of the smartphone and it is observed that the fine details in
the super-resolved test selfie are preserved. In the future, the
proposed algorithm will be extended to super-resolve dis-
torted selfie images. Qualitative and quantitative experiments
have validated the efficiency and effectiveness of the proposed
algorithm over other state-of-the-art SR algorithms.
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