8,758 research outputs found
Realization of Delayed Least Mean Square Adaptive Algorithm using Verilog HDL for EEG Signals
An efficient architecture for the implementation of delayed least mean square (DLMS) adaptive filter is presented in this paper. It is shown that the proposed architectures reduces the register complexity and also supports the faster convergence. Compared to transpose form, the direct form LMS adaptive filter has fast convergence but both has most similar critical path. Further it is shown that in most of the practical cases, very small adaptation delay is sufficient enough to implement a direct-form LMS adaptive filter where in normal cases a very high sampling rate is required and also it shows that no pipelining approach is necessary. From the above discussed estimations three different architectures of LMS adaptive filter has been designed. They are, first design comprise of zero delays i.e., with no adaptation delays, second design comprises of only single delay i.e., with only one adaptation delay, and lastly the third design comprises of two adaptation delays. Among all the three designs zero adaptation delay structure gives efficient performance comparatively. Design with zero adaptation delay involves the minimum energy per sample (EPS) and also minimum area compared to other two designs. The aim of this thesis is to design an efficient filter structures to create a system-on-chip (SoC) solution by using an optimized code for solving various adaptive filtering problems in the system. In this thesis our main focus is on interference cancellation in electroencephalogram (EEG) applications by using the proposed filter structures. Modern field programmable gate arrays (FPGAs) have the resources that are required to design an effective adaptive filtering structures. The designs are evaluated in terms of design time, area and delays
Graviton n-point functions for UV-complete theories in Anti-de Sitter space
We calculate graviton n-point functions in an anti-de Sitter black brane
background for effective gravity theories whose linearized equations of motion
have at most two time derivatives. We compare the n-point functions in Einstein
gravity to those in theories whose leading correction is quadratic in the
Riemann tensor. The comparison is made for any number of gravitons and for all
physical graviton modes in a kinematic region for which the leading correction
can significantly modify the Einstein result. We find that the n-point
functions of Einstein gravity depend on at most a single angle, whereas those
of the corrected theories may depend on two angles. For the four-point
functions, Einstein gravity exhibits linear dependence on the Mandelstam
variable s versus a quadratic dependence on s for the corrected theory.Comment: 29 page
Recommended from our members
Structural coupling and magnetic tuning in Mn2–x CoxP magnetocalorics for thermomagnetic power generation
Ion traps fabricated in a CMOS foundry
We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm
CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the
top metal layer of the process for the trap electrodes. The process includes
doped active regions and metal interconnect layers, allowing for co-fabrication
of standard CMOS circuitry as well as devices for optical control and
measurement. With one of the interconnect layers defining a ground plane
between the trap electrode layer and the p-type doped silicon substrate, ion
loading is robust and trapping is stable. We measure a motional heating rate
comparable to those seen in surface-electrode traps of similar size. This is
the first demonstration of scalable quantum computing hardware, in any
modality, utilizing a commercial CMOS process, and it opens the door to
integration and co-fabrication of electronics and photonics for large-scale
quantum processing in trapped-ion arrays.Comment: 4 pages, 3 figure
Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7
Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a
combination of structural, magnetic, and electrical and thermal transport
studies. Analysis of synchrotron X-ray and neutron diffraction patterns
suggests some site disorder on the A-site in the pyrochlore sublattice: Ru
substitutes on the Nd-site up to 7.0(3)%, regardless of the different
preparative conditions explored. Intrinsic magnetic and electrical transport
properties have been measured. Ru 4d spins order antiferromagnetically at 143 K
as seen both in susceptibility and specific heat, and there is a corresponding
change in the electrical resistivity behaviour. A second antiferromagnetic
ordering transition seen below 10 K is attributed to ordering of Nd 4f spins.
Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be
independent of the Ru-antisite disorder on the Nd site. The electrical
properties of Nd2Ru2O7 are presented in the light of data published on all
A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+
ions on the A-site play in driving metallic behaviour. High-temperature
thermoelectric properties have also been measured. When considered in the
context of known thermoelectric materials with useful figures-of-merit, it is
clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents
it from being an effective thermoelectric. A method for screening candidate
thermoelectrics is suggested.Comment: 19 pages, 10 figure
Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix
Exchange biased composites of ferromagnetic single-domain Ni nanoparticles
embedded within large grains of MnO have been prepared by reduction of
NiMnO phases in flowing hydrogen. The Ni precipitates are 15-30
nm in extent, and the majority are completely encased within the MnO matrix.
The manner in which the Ni nanoparticles are spontaneously formed imparts a
high ferromagnetic- antiferromagnetic interface/volume ratio, which results in
substantial exchange bias effects. Exchange bias fields of up to 100 Oe are
observed, in cases where the starting Ni content in the precursor
NiMnO phase is small. For particles of approximately the same
size, the exchange bias leads to significant hardening of the magnetization,
with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure
- …