8,758 research outputs found

    Realization of Delayed Least Mean Square Adaptive Algorithm using Verilog HDL for EEG Signals

    Get PDF
    An efficient architecture for the implementation of delayed least mean square (DLMS) adaptive filter is presented in this paper. It is shown that the proposed architectures reduces the register complexity and also supports the faster convergence. Compared to transpose form, the direct form LMS adaptive filter has fast convergence but both has most similar critical path. Further it is shown that in most of the practical cases, very small adaptation delay is sufficient enough to implement a direct-form LMS adaptive filter where in normal cases a very high sampling rate is required and also it shows that no pipelining approach is necessary. From the above discussed estimations three different architectures of LMS adaptive filter has been designed. They are, first design comprise of zero delays i.e., with no adaptation delays, second design comprises of only single delay i.e., with only one adaptation delay, and lastly the third design comprises of two adaptation delays. Among all the three designs zero adaptation delay structure gives efficient performance comparatively. Design with zero adaptation delay involves the minimum energy per sample (EPS) and also minimum area compared to other two designs. The aim of this thesis is to design an efficient filter structures to create a system-on-chip (SoC) solution by using an optimized code for solving various adaptive filtering problems in the system. In this thesis our main focus is on interference cancellation in electroencephalogram (EEG) applications by using the proposed filter structures. Modern field programmable gate arrays (FPGAs) have the resources that are required to design an effective adaptive filtering structures. The designs are evaluated in terms of design time, area and delays

    Graviton n-point functions for UV-complete theories in Anti-de Sitter space

    Get PDF
    We calculate graviton n-point functions in an anti-de Sitter black brane background for effective gravity theories whose linearized equations of motion have at most two time derivatives. We compare the n-point functions in Einstein gravity to those in theories whose leading correction is quadratic in the Riemann tensor. The comparison is made for any number of gravitons and for all physical graviton modes in a kinematic region for which the leading correction can significantly modify the Einstein result. We find that the n-point functions of Einstein gravity depend on at most a single angle, whereas those of the corrected theories may depend on two angles. For the four-point functions, Einstein gravity exhibits linear dependence on the Mandelstam variable s versus a quadratic dependence on s for the corrected theory.Comment: 29 page

    Ion traps fabricated in a CMOS foundry

    Get PDF
    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.Comment: 4 pages, 3 figure

    Structural disorder, magnetism, and electrical and thermoelectric properties of pyrochlore Nd2Ru2O7

    Full text link
    Polycrystalline Nd2Ru2O7 samples have been prepared and examined using a combination of structural, magnetic, and electrical and thermal transport studies. Analysis of synchrotron X-ray and neutron diffraction patterns suggests some site disorder on the A-site in the pyrochlore sublattice: Ru substitutes on the Nd-site up to 7.0(3)%, regardless of the different preparative conditions explored. Intrinsic magnetic and electrical transport properties have been measured. Ru 4d spins order antiferromagnetically at 143 K as seen both in susceptibility and specific heat, and there is a corresponding change in the electrical resistivity behaviour. A second antiferromagnetic ordering transition seen below 10 K is attributed to ordering of Nd 4f spins. Nd2Ru2O7 is an electrical insulator, and this behaviour is believed to be independent of the Ru-antisite disorder on the Nd site. The electrical properties of Nd2Ru2O7 are presented in the light of data published on all A2Ru2O7 pyrochlores, and we emphasize the special structural role that Bi3+ ions on the A-site play in driving metallic behaviour. High-temperature thermoelectric properties have also been measured. When considered in the context of known thermoelectric materials with useful figures-of-merit, it is clear that Nd2Ru2O7 has excessively high electrical resistivity which prevents it from being an effective thermoelectric. A method for screening candidate thermoelectrics is suggested.Comment: 19 pages, 10 figure

    Exchange biasing of single-domain Ni nanoparticles spontaneously grown in an antiferromagnetic MnO matrix

    Full text link
    Exchange biased composites of ferromagnetic single-domain Ni nanoparticles embedded within large grains of MnO have been prepared by reduction of Nix_xMn1x_{1-x}O4_4 phases in flowing hydrogen. The Ni precipitates are 15-30 nm in extent, and the majority are completely encased within the MnO matrix. The manner in which the Ni nanoparticles are spontaneously formed imparts a high ferromagnetic- antiferromagnetic interface/volume ratio, which results in substantial exchange bias effects. Exchange bias fields of up to 100 Oe are observed, in cases where the starting Ni content xx in the precursor Nix_xMn1x_{1-x}O4_4 phase is small. For particles of approximately the same size, the exchange bias leads to significant hardening of the magnetization, with the coercive field scaling nearly linearly with the exchange bias field.Comment: 6 pages PDFLaTeX with 9 figure
    corecore