143 research outputs found

    Are all fast radio bursts repeating sources?

    Full text link
    We present Monte-Carlo simulations of a cosmological population of repeating fast radio burst (FRB) sources whose comoving density follows the cosmic star formation rate history. We assume a power-law model for the intrinsic energy distribution for each repeating FRB source located at a randomly chosen position in the sky and simulate their dispersion measures (DMs) and propagation effects along the chosen lines-of-sight to various telescopes. In one scenario, an exponential distribution for the intrinsic wait times between pulses is chosen, and in a second scenario we model the observed pulse arrival times to follow a Weibull distribution. For both models we determine whether the FRB source would be deemed a repeater based on the telescope sensitivity and time spent on follow-up observations. We are unable to rule out the existence of a single FRB population based on comparisons of our simulations with the longest FRB follow-up observations performed. We however rule out the possibility of FRBs 171020 and 010724 repeating with the same rate statistics as FRB 121102 and also constrain the slope of a power-law fit to the FRB energy distribution to be −2.0<γ<−1.0-2.0 < \gamma <-1.0. All-sky simulations of repeating FRB sources imply that the detection of singular events correspond to the bright tail-end of the adopted energy distribution due to the combination of the increase in volume probed with distance, and the position of the burst in the telescope beam.Comment: 10 pages, 4 figures, accepted for publication in MNRA

    Multi-frequency observations and spectral analysis of two gigahertz-peaked spectra pulsars

    Full text link
    We report the multi-frequency observations of two pulsars: J1740+1000 and B1800-21, using the Giant Metrewave Radio Telescope and the Green Bank Telescope. The main aim of these observations was to estimate the flux density spectrum of these pulsars, as both of them were previously reported to exhibit gigahertz-peaked spectra. J1740+1000 is a young pulsar far from the Galactic plane and the interpretation of its spectrum was inconclusive in the light of the recent flux density measurements. Our result supports the gigahertz-peaked interpretation of the PSR J1740+1000 spectrum. B1800-21 is a Vela-like pulsar near the W30 complex, whose spectrum exhibit a significant change between 2012 and 2014 year. Our analysis shows that the current shape of the spectrum is similar to that observed before 2009 and confirms that the observed spectral change happen in a time-scale of a few years.Comment: 9 pages, 7 figure

    Detecting fast radio bursts at decametric wavelengths

    Get PDF
    Fast radio bursts (FRBs) are highly dispersed, sporadic radio pulses that are likely extragalactic in nature. Here we investigate the constraints on the source population from surveys carried out at frequencies 3˘c1\u3c1~GHz. All but one FRB has so far been discovered in the 1--2~GHz band, but new and emerging instruments look set to become valuable probes of the FRB population at sub-GHz frequencies in the near future. In this paper, we consider the impacts of free-free absorption and multi-path scattering in our analysis via a number of different assumptions about the intervening medium. We consider previous low frequency surveys alongwith an ongoing survey with the University of Technology digital backend for the Molonglo Observatory Synthesis Telescope (UTMOST) as well as future observations with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the Hydrogen Intensity and Real-Time Analysis Experiment (HIRAX). We predict that CHIME and HIRAX will be able to observe ∼\sim 30 or more FRBs per day, even in the most extreme scenarios where free-free absorption and scattering can significantly impact the fluxes below 1~GHz. We also show that UTMOST will detect 1--2 FRBs per month of observations. For CHIME and HIRAX, the detection rates also depend greatly on the assumed FRB distance scale. Some of the models we investigated predict an increase in the FRB flux as a function of redshift at low frequencies. If FRBs are truly cosmological sources, this effect may impact future surveys in this band, particularly if the FRB population traces the cosmic star formation rate. Rajwade, Kaustubh; Lorimer, Dunca

    A search for rotating radio transients and fast radio bursts in the Parkes high-latitude pulsar survey

    Get PDF
    Discoveries of rotating radio transients and fast radio bursts (FRBs) in pulsar surveys suggest that more of such transient sources await discovery in archival data sets. Here we report on a single-pulse search for dispersed radio bursts over a wide range of Galactic latitudes (|b| < 60∘60^{\circ}) in data previously searched for periodic sources by Burgay et al. We re-detected 20 of the 42 pulsars reported by Burgay et al. and one rotating radio transient reported by Burke-Spolaor. No FRBs were discovered in this survey. Taking into account this result, and other recent surveys at Parkes, we corrected for detection sensitivities based on the search software used in the analyses and the different backends used in these surveys and find that the all-sky FRB event rate for sources with a fluence above 4.0 Jy ms at 1.4 GHz to be R=4.4−3.1+5.2×103{\cal R} = 4.4^{+5.2}_{-3.1} \times 10^3 FRBs day−1^{-1} sky−1^{-1}, where the uncertainties represent a 99%99\% confidence interval. While this rate is lower than inferred from previous studies, as we demonstrate, this combined event rate is consistent with the results of all systematic FRB searches at Parkes to date and does not require the need to postulate a dearth of FRBs at intermediate latitudes.Comment: Accepted, 10 pages, 6 figure

    IQRM: real-time adaptive RFI masking for radio transient and pulsar searches

    Get PDF
    In a search for short timescale astrophysical transients in time-domain data, radio-frequency interference (RFI) causes both large quantities of false positive candidates and a significant reduction in sensitivity if not correctly mitigated. Here we propose an algorithm that infers a time-variable frequency channel mask directly from short-duration (∼\sim1 s) data blocks: the method consists of computing a spectral statistic that correlates well with the presence of RFI, and then finding high outliers among the resulting values. For the latter task, we propose an outlier detection algorithm called Inter-Quartile Range Mitigation (IQRM), that is both non-parametric and robust to the presence of a trend in sequential data. The method requires no training and can in principle adapt to any telescope and RFI environment; its efficiency is shown on data from both the MeerKAT and Lovell 76-m radio telescopes. IQRM is fast enough to be used in a streaming search and has been integrated into the MeerTRAP real-time transient search pipeline. Open-source Python and C++ implementations are also provided.Comment: Accepted for publication in MNRAS, 11 pages, 9 figures. Minor corrections, improved clarity, additional analysis of impact on single pulse searches. IQRM implementations can be found at https://github.com/v-morello/iqrm (Python) and https://gitlab.com/kmrajwade/iqrm_apollo (C++

    Detecting pulsars in the Galactic Centre

    Get PDF
    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free–free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free–free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9–13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC

    Detecting pulsars in the Galactic Centre

    Get PDF
    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic Centre (GC) region, which we define to be within a projected distance of 1 pc from Sgr A*. This null result is surprising given that several independent lines of evidence predict a sizable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free–free absorption and multipath scattering to be the two main sources of flux density mitigation. We demonstrate that the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free–free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 52 canonical pulsars and 10 000 millisecond pulsars. We find that the optimum frequency for future surveys is in the range of 9–13 GHz. We also predict that future deeper surveys with the Square Kilometre array will probe a significant portion of the existing radio pulsar population in the GC

    Evidence for an abundant old population of Galactic ultra long period magnetars and implications for fast radio bursts

    Full text link
    Two recent discoveries, namely PSR J0901-4046 and GLEAM-X J162759.5-523504.3 (hereafter GLEAM-X J1627), have corroborated an extant population of radio-loud periodic sources with long periods (76 s and 1091 s respectively) whose emission can hardly be explained by rotation losses. We argue that GLEAM-X J1627 is a highly-magnetized object consistent with a magnetar (an ultra long period magnetar - ULPM), and demonstrate it is unlikely to be either a magnetically or a rotationally-powered white dwarf. By studying these sources together with previously detected objects, we find there are at least a handful of promising candidates for Galactic ULPMs. The detections of these objects imply a substantial number, N≳13000N \gtrsim 13000 and N≳500N \gtrsim 500 for PSR J0901--4046 like and GLEAM-X J1627 like objects, respectively, within our Galaxy. These source densities, as well as cooling age limits from non-detection of thermal X-rays, Galactic offsets, timing stability and dipole spindown limits, all imply the ULPM candidates are substantially older than confirmed Galactic magnetars and that their formation channel is a common one. Their existence implies widespread survival of magnetar-like fields for several Myr, distinct from the inferred behaviour in confirmed Galactic magnetars. ULPMs may also constitute a second class of FRB progenitors which could naturally exhibit very long periodic activity windows. Finally, we show that existing radio campaigns are biased against detecting objects like these and discuss strategies for future radio and X-ray surveys to identify more such objects. We estimate that O(100){\cal O}(100) more such objects should be detected with SKA-MID and DSA-2000.Comment: 22 pages, 10 figures. Published in MNRA

    Point counting on reductions of CM elliptic curves

    Get PDF
    We give explicit formulas for the number of points on reductions of elliptic curves with complex multiplication by any imaginary quadratic field. We also find models for CM Q\mathbf{Q}-curves in certain cases. This generalizes earlier results of Gross, Stark, and others.Comment: Minor corrections. To appear in Journal of Number Theor
    • …
    corecore