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ABSTRACT

In a search for short-time-scale astrophysical transients in time-domain data, radio-frequency interference (RFI) causes both
large quantities of false positive candidates and a significant reduction in sensitivity if not correctly mitigated. Here, we propose
an algorithm that infers a time-variable frequency channel mask directly from short-duration (~1s) data blocks: the method
consists of computing a spectral statistic that correlates well with the presence of RFI, and then finding high outliers among the
resulting values. For the latter task, we propose an outlier detection algorithm called Inter-Quartile Range Mitigation (IQRM),
which is both non-parametric and robust to the presence of a trend in sequential data. The method requires no training and can, in
principle, adapt to any telescope and RFI environment; its efficiency is shown on data from both the MeerKAT and Lovell 76-m
radio telescopes. IQRM is fast enough to be used in a streaming search and has been integrated into the MeerTRAP real-time
transient search pipeline. Open-source PYTHON and C++implementations are also provided.

Key words: methods: data analysis — pulsars: general —fast radio bursts.

1 INTRODUCTION

Radio-frequency interference (RFI) broadly refers to all signals
that negatively impact radio astronomical observations. While the
vast majority emanates from artificial sources, naturally occurring
phenomena such as lightning can regularly affect some observatories
as well (Sokolowski, Wayth & Lewis 2015). In radio transient and
pulsar searches, idealized data consist of the superposition of a
weak astrophysical signal with uncorrelated Gaussian noise in all
frequency channels. In this case, the theoretically optimal detection
method is known both for individual pulses (Cordes & McLaughlin
2003) and periodic sources (Morello et al. 2020). Search codes thus
generally work under the assumption of a pure Gaussian noise
background, which is, however, never realized in practice. The
calculation of the detection statistic is dependent on estimating the
mean and standard deviation of the background noise from the data;
this process is perturbed by the presence of RFI, which can act to
reduce the estimated signal-to-noise ratio of a genuine source below
the detection threshold. It is necessary to subtract away or mask
undesirable signals from the data before they are searched, in order
toremain acceptably close to the ideal data assumptions and approach
the theoretical sensitivity of the instrument.

RFI mitigation can be performed at all stages of the signal chain,
with complementary benefits (see e.g. Baan 2010, for an overview).
One can make a broad distinction between pre-detection techniques,
which act on the voltage data stream while it is still available at
its highest time resolution, and post-detection methods that operate
on the channelized, two-dimensional (2D) time-frequency data just
before they are searched for radio transients and pulsars. The former
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is better suited to removing short bursts of RFI with minimal data
loss; however, they are required to handle large volumes of data
in real time and thus tend to be limited to simple thresholding and
replacement schemes. A notable exception is that interferometric
arrays may implement an additional technique called spatial filtering
(e.g. Leshem, van der Veen & Boonstra 2000), where a null in the
beam pattern can be placed in the estimated direction of a strong
interference source.

On the other hand, the detection stage involves integrating the
baseband data in time, making weaker sources of RFI accessible
for removal and reducing the data rate, which in turn enables more
sophisticated processing. Post-detection methods usually attempt to
blank sections of data across the time and/or frequency dimension
based on some specific RFI signatures. Two simple but highly
popular methods are the application of a fixed channel mask, which
permanently discards the most RFI-occupied portions of the band,
and the so-called zero-dispersion measure (DM) filter of Eatough,
Keane & Lyne (2009) that aims to subtract away broad-band signals
that show no cold-plasma dispersion expected from propagation
through the interstellar medium. An entire class of algorithms
involves flagging sections of data based on whether some statistical
property exits the range expected for clean data: for example, a
rolling sum over multiple time-scales (the SUMTHRESHOLD algorithm
of Offringa et al. 2010), or a higher-order statistical moment (Nita &
Gary 2010). Convolutional neural networks have also been trained
to perform intelligent clipping of time-frequency data (e.g. Akeret
et al. 2017). Fourier transforming the data and finding Fourier bins
with excessive power is effective against weaker periodic RFI and
well-suited to periodicity searches (Fridman & Baan 2001; Maan,
van Leeuwen & Vohl 2020).

While there is a trade-off between RFI removal effectiveness and
execution speed, the pressure to find methods that perform well on
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both fronts is increasing, and not all the aforementioned methods
are fast enough to be used in a streaming environment. Indeed, on
the latest and upcoming generations of radio telescopes, an RFI
mitigation algorithm should aim to be:

(1) Fast enough to be used on massively multibeam systems,
where searching large data streams in real time has now become
a fundamental requirement (e.g. CHIME/FRB Collaboration et al.
2018; Rajwade et al. 2021)

(ii) Able to increase the detection probability of genuine sources
and reduce the spurious candidate rate at the same time

(iii) Transferable between telescopes with limited adjustments to
the algorithm’s parameters, which would make it more useful to the
community as a whole and avoid duplication of work.

The challenge lies in developing methods that fulfil all three
criteria.

Static channel masks may be a blunt tool, but are extremely easy
to implement and optimal against portions of the band permanently
ridden with RFI. However, the shape and portion of the band occupied
by RFI vary as a function of pointing position and of time; a common
situation is that a few channels are permanently unusable, while most
of them can be occasionally affected with narrow-band RFI; this is
arguably the case on MeerKAT, for example (Sihlangu, Oozeer &
Bassett 2020, see also section 3.1). The ability to automatically
and accurately adapt a channel mask to the current data on a
time-scale of a few seconds is quite desirable; here, we propose
an algorithm called Inter-Quartile Range Mitigation (IQRM) that
performs this task much faster than real time; IQRM stands for Inter-
Quartile range RFI Mitigation, for reasons that will become clear
below.

The outline of the paper is as follows: In Section 2, we explain the
rationale behind the design of IQRM before describing the algorithm
in detail. In Section 3, we test the ability of IQRM to derive a time-
variable channel mask from spectral statistics of data obtained with
the MeerKAT and Lovell radio telescopes; its execution speed is
also measured. We then evaluate the impact of IQRM in a blind
search for single pulses in Section 4; using over 2 h of known pulsar
observations taken with the Lovell Telescope (LT), we compare the
number of genuine astrophysical pulses and false positives reported,
with and without IQRM applied. We conclude in Section 5 after
discussing the performance, limitations and potential extensions to
the method.

2 METHOD

2.1 General principle

Search-mode data is a sequence of dynamic spectra recorded with
integration times of typically a few tens to hundreds of microseconds.
Given a short-duration block of such time-frequency data, the goal
of IQRM is to identify all frequency channels affected by narrow-
band RFI. The initial step is to reduce the entire block to a single
summary statistic per frequency channel (i.e. a spectral moment),
and then to determine for which channels the statistic value is
unlikely to be associated with clean data. Nita et al. have previously
proposed a method where the data are flagged based on their short-
term spectral kurtosis (Nita et al. 2007; Nita & Gary 2010), for
which the acceptable range of values can be determined from first
principles. IQRM could be described as a generalisation attempt of
the aforementioned work where:
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(1) Any spectral statistic can be used as the basis to decide which
channels are contaminated by RFI, the only requirement being that
higher values must indicate a higher probability of contamination.

(i1) The rejection threshold value for the statistic is inferred from
the data and assumed to vary slowly with observing frequency; in
other words, an arbitrary frequency-dependent background trend or
‘baseline’ is expected to be present in the sequence of spectral statistic
values.

Anything that alters the effective system temperature unequally
across the band has the potential to generate such a baseline, for
example imperfect bandpass filters, variations in receiver response,
the diffuse Galactic radio emission (e.g. Haslam et al. 1981), the
presence of a bright radio source with a steep spectral index in the
telescope field of view, or broad-band RFI. The fundamental idea
of IQRM is to subtract away the baseline problem by taking the
so-called lagged differences of the spectral moment values, and then
finding high outliers in these difference values, which is a simpler
task.

2.2 The IQRM algorithm

Formally, the IQRM algorithm takes as its input an ordered sequence
of real-valued numbers (x,-),’-’;o1 and identifies values significantly
larger than their close neighbours in the sequence. i represents a
channel index and x; the value of the chosen spectral moment (the
measure of RFI contamination) in that channel. IQRM has two
adjustable parameters:

(1) The radius r: the distance (expressed in number of sequence
elements) to the furthest neighbour being considered when evaluating
the outlier status of a given data point in the sequence.

(ii) The threshold #: a significance level (expressed in number of
Gaussian sigmas) which controls by how much a data point must
exceed one of its neighbours to be categorized as an outlier.

The first step of the algorithm is to calculate a set of lagged
differences of the input sequence (x;). Here, the lagged difference of

(x;) for a given lag k € Z is defined as thesequence (Af);’;ol such that

A =X = xi g (1

where the boundary conditions are handled by setting x; = x for j <
0 and x; = x,, _ | for j > n in the expression above. The usefulness of
the lagged difference operation when a trend is present is illustrated
in Fig. 1. Itis necessary to calculate lagged differences using multiple
trial values for k so that a set of consecutive outliers with very similar
values does not escape detection. Trial lag values are selected within
the range [— r, 4r], excluding 0. To save computation time, we do not
try every possible integer value in that range, but instead, arrange the
trial values in a geometric progression using the following recurrence
relation:

ko =1

@)
km+1 = max(LlS X kas km + 1),

where | | denotes the floor function, and noting that all —k,, are also
added to the sequence of trial values. For example, the sequence
corresponding to r = 10is (— 9, —6, —4, =3, =2, —1,1,2,3,4, 6,
and 9). The geometric progression factor of 1.5 has been chosen as
a reasonable compromise between masking accuracy and execution
speed, but it has not been subjected to a rigorous optimization process
on test data.

Then, for each trial lag value k separately, high outliers in the

sequence (AX)!Z) are then identified using a criterion similar to
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Figure 1. The fundamental idea of IQRM: the lagged difference operation
eliminates a slowly varying trend in sequential data and facilitates the
procedural identification of outliers. Top panel: artificially generated input
data. These are the sum of two sine functions and Gaussian noise; an additional
40 points selected at random were then incremented by an exponentially
distributed random variate, to simulate high outliers. Bottom panel: lagged
difference of the input data (equation 1) with a lag of k = 1 bin; the red dashed
lines represent p; & 3 X oy, i.e. the acceptable range of values empirically
inferred using the robust mean and scale estimators of equations (3) and (4).
Points highlighted in orange are those deemed abnormally larger than their
previous neighbours according to equation (5). IQRM repeats this process
for multiple values of the lag k in order to overcome cases where consecutive
points are outliers with similar values.

Tukey’s rule for outliers, also known as Tukey’s fences (Tukey 1977).
Here, we assume that the Af-‘ values (for fixed k) contain:

(1) A majority of inliers that follow some underlying distribution
with mean ju; and standard deviation o.

(ii) A minority of outliers that span a range of values much greater
than o

1, and o4 need to be measured using robust estimators, i.e. that
are not easily biased by outliers. We use the following:

i = Qk(0.5), (3)

0(0.75) — 0(025) _ IQR
d-1(0.75) — -1(0.25)  1.349°

where Qi(z) denotes the z-th empirical quantile of the Af-‘, and
®~! is the inverse cumulative distribution function of the normal
distribution. In other words, the mean of the inliers is taken to be the
median of the Af; the standard deviation of the inliers is taken to be
proportional to the empirical inter-quartile range IQR = Q4(0.75) —
04(0.25), where we used the fact that the inter-quartile range of the
normal distribution is IQRpom = ®~1(0.75) — ®~1(0.25) ~ 1.349.
For every pair (i, k), we then test the condition

)

O =

(Af =) > t X0y, )

which if true denotes that x; is abnormally larger than x; _, but on
its own, this does not enable discrimination between cases, where
X; is a high outlier that should be flagged, and where x; _ is a low
outlier that should be ignored. Flagging any x; for which equation (5)
is true for at least one trial lag value k£ would create a pathological
case, where the algorithm would mask the entire neighbourhood of
every low outlier against any common sense. Another processing
step, illustrated on a simple example in Fig. 2, is required to avoid
this situation: when equation (5) is true, we state thereafter that x; _ ;
casts a ‘vote’ against x;, which we note (i — k) — i. Once collected,
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the full set of votes can be represented as the edges of a directed
graph, where the nodes are array indices. A vote i — j is considered
valid if and only if i has cast strictly less votes in total than j has
received. Any data point that receives at least one valid vote is finally
marked as an outlier, and the algorithm returns a binary mask with
the same size as the input data sequence. The overall effect of IQRM
on real data is shown on an example pulse from a known pulsar
recorded with MeerKAT at L Band (Fig. 3).

2.3 Practical implementation and usage

A minimal open-source implementation of IQRM in the PYTHON
language has been made available.! It is minimal in the sense
that it provides only the outlier flagging capability specified in
Section 2.2. Furthermore, identifying sections of data affected by
RFI is not sufficient; this information must then be provided to a
search code. The difficulty that arises here comes from the fact
that IQRM is meant to generate a channel mask that varies in
time: it reads consecutive data blocks of a few seconds in length,
calculates their spectral standard deviation (or other contamination
statistics of choice), and obtain a mask adapted to each block by
applying IQRM. However, with the notable exception of PRESTO
(Ransom, Eikenberry & Middleditch 2002), the dedispersion stages
of most widely used search pipelines are not designed to deal
with time-variable masks, and instead only accept a fixed list of
channels to ignore; such is the case of SIGPROC (Lorimer 2011),
HEIMDALL,?> PEASOUP,®> and ASTROACCELERATE (Addmek & Armour
2020). In many use cases, it is thus necessary to replace the bad
sections of the original data with adequate substitution values, before
sending the edited data for processing. For that purpose, we provide
a C+ + implementation, IQRM APOLLO,* that performs the full
sequence of operations: reading, calculation of the spectral moment,
flagging, and replacing. It currently processes SIGPROC filterbank files
and saves cleaned copies, noting that interfaces to other formats can
be added. There are three possible replacement policies for flagged
data:

(i) Replace by a constant value of the user’s choice.

(i) Replace by the mean of the medians of the non-flagged
channels within the block.

(iii) Replace by artificial Gaussian noise, with mean and variance
equal to the global median and global variance of the non-flagged
channels within the block.

Mean-of-medians is the default and recommended option, noting
that the code is modular and other data replacement strategies can be
implemented.

3 TESTS ON SPECTRAL STATISTIC SAMPLES

In this section, we test the efficacy of the IQRM masking process
described in the previous section on spectral statistic samples
obtained from real-world observations.

3.1 MeerTRAP

MeerKAT is an array of 64 antennas in the Karoo region of South
Africa (Jonas & MeerKAT Team 2016), each 13.5 m in diameter and

Uhttps://github.com/v-morello/igrm
Zhttps://sourceforge.net/projects/heimdall-astro/
3https://github.com/ewanbarr/peasoup
“https://gitlab.com/kmrajwade/igrm_apollo
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Figure 2. Illustration of the IQRM ‘voting’ system on a simple test case. Left-hand panel: input data, deliberately generated so that all non-zero lagged
differences are considered significant by the algorithm [through equation (5)]. IQRM was then run with a threshold of 3.0 and a radius of 2 channels, which
corresponds to trial lag values of {—2, —1, +1, and +2}. Middle panel: summary of votes cast by channel indices on their neighbours, represented as a directed
graph. A vote i — j is considered valid if and only if i has cast strictly less votes in total than j has received; this ensures that neighbours of low outliers are not
abusively flagged. Here, every vote cast by channel 6 is invalid. Right-hand panel: final vote graph after pruning invalid votes; only channel 4 gets marked as a

high outlier, reasonably so.
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Figure 3. A single pulse from RRAT J1226—3223 recorded with MeerKAT at L Band during the commissioning phase of the MeerTRAP transient search
backend (see Section 3.1 for a system description) in July 2019. Left-hand panel: original time-frequency data block; here, the spectral standard deviation of the
block was provided as the input to IQRM, where the radius parameter was set to 7 = 100 and the threshold to # = 3.0. Right-hand panel: same data where the
frequency channels flagged by IQRM are shown in blue; the colour scale for valid data and the axis ranges are otherwise unchanged. 17 per cent of the channels

were masked in this example.

with the capacity to host four different receivers; both an L band
(856-1712 MHz) and a UHF (544-1088 MHz) receiver are currently
operational. The raw voltage signals are digitized at the antennas and
then streamed to the central correlator and beamformer (CBF), which
handles channelization followed by correlation and/or beamforming.
The CBF is designed to cover the needs of most telescope users
while remaining cost-effective and does not feature a massively
multibeam mode for radio transient searches, which greatly benefit
from a wide field of view. However, MeerKAT can host additional
backends called USEs (for user-supplied equipment) that may receive
a copy of the antenna signals via the CBF and implement additional
functionality. MeerTRAP is the commensal, real-time radio transient,
and pulsar search processor for the MeerKAT radio telescope. It is
the association of two sets of user-supplied equipment:

(i) FBFUSE: a GPU-based beamforming cluster capable of tiling
the primary field of view of the telescope with over a thousand tied-
array beams (Barr 2018).

(i1) TUSE: a 66-node search cluster that ingests the beamformed
data streams from FBFUSE and searches them for radio transients in
real time. The raw data are immediately discarded after processing

MNRAS 510, 1393-1403 (2022)

due to their large volume, and only a limited number of data products
are kept.

A more detailed system description can be found in Rajwade et al.
(2021). The configuration of both components is flexible, but in most
observations, they are set so that TUSE searches 768 beams tiled in a
hexagonal pattern centred on boresight position, and where the data
are digitized to 8-bit precision, contain 1024 frequency channels and
have a sampling interval of either 306 us (at L band) or 480 us (at
UHF). In parallel to the search pipeline, each TUSE node runs a so-
called bandpass monitor that measures and records spectral statistics
of the data for every beam every 65, which has provided the test
data set for this section. A very important detail to mention here is
how the mean and scale of the beamformed data are set on FBFUSE
before they are 8-bit digitized. The process is as follows:

(1) A command to initiate a data rescaling is received, which
happens when moving to a new source or at the user’s request.

(i) FBFUSE waits until its first input ring buffer block has been
filled with data from the CBF. The block has three dimensions:
antenna index, observing frequency, and time. It contains approxi-
mately 0.3 s worth of data.
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Figure 4. Test of IQRM on 5h of MeerTRAP L Band, 1024-channel data with a 306.24 s sampling interval. Top panel: spectral standard deviation of the
data stream from a single tied-array beam as a function of time, measured on consecutive 6-s data blocks. The beamformer aims to produce 8-bit sampled data
scaled to a mean of 127 and a standard deviation of 7.0, which in practice happens only in channels dominated by background noise; higher values are a reliable
indicator of RFI (see Section 3.1 for further details). The colour scale has been clipped for readability; some channels can reach a standard deviation >100.
Vertical lines correspond to short processing interruptions caused by target changes, and adjustments of the beam tiling pattern on the sky that occur every
10 min. Bottom panel: same plot after running IQRM on every spectral standard deviation sample (i.e. every column in the top panel plot), using a radius r =

100 and a threshold 7 = 3.0. Channels flagged by IQRM are shown in orange.

(iii) The complex gain corrections are applied to the block.

(iv) The mean and standard deviation of the block are calculated
for each channel across all antennas taken together.

(v) Using these estimates, a scale and an offset term are chosen
such that the beamformed data has an expected mean of 127 and a
standard deviation of 7.0. The scale and offset terms are kept constant
and applied to all subsequent blocks until the next rescaling command
is received.

The calculation of the spectral scale and offsets assumes that the
input data is idealized Gaussian noise: that is, the addition of N
signals with unit scale from N independent antennas is expected to
result in a beamformed output with a scale of +/N. However, this
assumption breaks down in any channel containing highly directional
RFI: in these, the signals from distinct antennas retain a certain level
of coherence, and the output scale is thus significantly larger than
V/N. Because of this specific data scaling procedure, the spectral
standard deviation of the beamformed data received by TUSE has
been found to be an excellent indicator of RFI contamination, and
can be passed directly to IQRM. The efficacy of IQRM on MeerKAT
is shown in Fig. 4, on a 5-h sequence of spectral standard deviation
samples acquired at the L band.

We note that a few other spectral statistics were tried in con-
junction with IQRM on MeerTRAP data, where the effectiveness
of the masking was assessed visually on a sample of known pulsar
detections by comparing the data before and after masking as in
Fig. 3. These were the absolute values of spectral skewness, the
absolute value of spectral excess kurtosis, and the absolute value of
the spectral autocorrelation with a 1-sample delay [see Section 3.2
and equation (6) below for a definition]. Absolute values have to
be taken for all three to respect the requirement for use with IQRM
as stated in Section 2.1, namely that a higher value must indicate
a higher probability of contamination. On average, the spectral
standard deviation was found to leave fewer contaminated channels
unmasked. Rigorously exploring more statistics on a larger sample
of data remains to be done.

3.2 Lovell 76-m radio telescope

The 76-m LT is located at the Jodrell Bank Observatory in the
UK. It lies approximately 25 km from Manchester’s city centre and
15km away from its international airport. The RFI environment is
thus particularly adverse compared to MeerKAT or any telescope
located in a sparsely populated, radio-quiet area. The observing

MNRAS 510, 1393-1403 (2022)
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Figure 5. Application of IQRM to a 32-min LT observation of PSR B0611+22, with a 256 s sampling interval and 672 frequency channels. On Lovell data,
the spectral standard deviation is a much less powerful RFI indicator than on MeerKAT (see Section 3.2 for an explanation), and we have thus selected another
spectral statistic: the absolute value of the autocorrelation, with a delay of 1 sample. Top panel: spectral autocorrelation measured on consecutive 0.8-s blocks.
Bottom panel: same data where IQRM has been applied to every column in the top panel; we used a threshold # = 3.0 and radius r = 67, i.e. 10 per cent of the
number of channels. Flagged channels are shown in orange. A pathological case of the algorithm is visible on a few short time intervals here: it fails when a

majority of channels are dominated by RFI.

system has been previously described by Rajwade et al. (2020).
The effective observing band spans 336 MHz between 1396 and
1732 MHz, divided into 672 frequency channels, and the data are
digitized to 8-bit precision. In contrast to MeerTRAP, however, the
spectral standard deviation of the data does not correlate well with
RFI contamination here; the variance of the data was often found
to be smaller in interference-ridden channels. The most plausible
explanation is that the low-noise amplifiers of the receiver operate
outside of their linear range in the presence of strong RFI, a regime
beyond which their output signal power may become a decreasing
function of input signal power, contrary to design expectations
(Mickaliger, private communication). It was thus necessary to use
another spectral moment as an input to IQRM. After testing the
same set of spectral statistics that were tried on MeerTRAP data, we
found that the best alternative was the absolute value of the spectral
autocorrelation with a 1-sample delay, | ACF1| hereafter defined as:

> (X — (X — o)
no? ’

|ACF1| = (6)
where X; denotes a sequence of n samples within a given frequency
channel, and u and o? are the empirical mean and variance of the
X;, respectively. |ACF1] takes values in the range [0, 1] and has all
the required properties to be used as a proxy for RFI contamination
with IQRM:
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(i) Higher values indicate a larger departure from ideal uncorre-
lated Gaussian noise, for which the expected ACF is 0 regardless of
time lag.

(i1) It has a computational cost only marginally larger than the
spectral standard deviation, which makes it practical for real-time
processing.

(iii) It is independent from the scale of the data, and thus
insensitive to changes in spectral standard deviation caused by the
occasional level compression issues faced on LT data.

A test on a 32-min sequence of spectral |[ACF1| from an ob-
servation of PSR B0611+22 can be seen in Fig. 5, and shows
that IQRM can be used with different spectral statistics as an
input. There are, however, short time periods in LT data during
which they become essentially worthless across the whole band,
as can be seen, for example around 1100 s after the start of the test
observation. This is a case that IQRM cannot properly handle by
design, since a fundamental assumption is that the majority of the
frequency channels are reasonably clean. In this case, IQRM tends
to recommend leaving most or all of the observing band unmasked,
whereas the sensible action would be to discard the data block
entirely.
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Figure 6. Benchmarks of the IQRM APOLLO implementation. Using a single
CPU core, we ran the code on several test data files containing artificial
Gaussian noise, with a sampling time T = 256 s and a number of frequency
channels ranging from 128 to 16 384. The data were processed in consecutive
blocks of 4096-time samples, approx. 1.05s long, and a channel mask
calculated for each block. We separately measured the average time consumed
by the calculation of the spectral statistic (we tested standard deviation and
|ACF1| separately), and by the IQRM masking algorithm per se. The graph
shows the ratio between the effective data length and the execution time
of each task, i.e. how much faster than real time each task would run in a
streaming environment.

3.3 Execution speed

We measured the run times of the IQRM APOLLO implementation on
search-mode data files with different numbers of frequency channels,
all containing artificially generated Gaussian noise. These test files
were 60s long with a sampling interval of t = 256 us, and with
a number of channels equal to all powers of two between 256 and
16384 inclusive. We set the IQRM parameters to a radius equal to
10 per cent of the number of channels and a threshold of # = 3.0. The
data were processed in blocks of 4096 samples (1.05 s long), and for
each block, a channel mask was calculated. We ran the code twice
on each file, once using spectral standard deviation as the spectral
statistic of choice, and once using the spectral autocorrelation with
a lag of 1 sample (JACF1| as described above). In both cases, we
recorded separately the total time taken by the calculation of the
spectral statistic and the total time consumed by the IQRM algorithm
per se, i.e. the process described in Section 2.2. A single Intel®) Xeon
E5-2630 CPU core was used.

The benchmarks results can be seen in Fig. 6; rather than
displaying the raw execution times, the ratio between the total
data duration and the total run time of each task is shown, which
shows how much faster than real time they can be completed in a
streaming environment such as MeerTRAP. We note that these results
must be linearly extrapolated for a data sampling interval different
from v = 256 ps; indeed, the run time-scales linearly with the total
number of time samples, but not necessarily with the data duration.
On both the MeerTRAP and LT observing systems described above,
IQRM can be run approximately 100 times faster than real time on
a single core of a recent CPU. It should be noted that the calculation
of the spectral statistic dominates the total cost, and in principle, this
task could be significantly accelerated using many-core architectures
compared to the single CPU core used here. A further speedup of
one order of magnitude may be achievable, assuming that computing
resources are plentiful enough.

1399

Table 1. Test pulsars chosen for the single-pulse search experiment with the
Lovell 76-m telescope at L band. DM denotes the DM and Sj400 the average
flux density at 1400 MHz. These sources were chosen so that: a) a large
sample of detectable single pulses would be recorded in a short amount of
observing time (30 min for each source), and b) the majority of detectable
pulses would be near the typical detection threshold of a search, in a regime
where the benefits of improved RFI mitigation are most evident. The data in
this table are from the ATNF pulsar catalogue (Manchester et al. 2005).

Pulsar Period (ms) DM (pccm™)  Sy400 (mJy)
PSR B0531+21 334 56.77 14
PSR B0611422 3349 96.91 3.3
PSR B0919+06 430.6 27.30 10

PSR J1819—1458 4263.2 196.0 N/A

4 TESTS ON SINGLE-PULSE SEARCHES WITH
THE LOVELL TELESCOPE

Although the experiments done in the previous section are an
important visual check of the IQRM algorithm behaviour on its
input, the spectral moment passed to the algorithm constitutes only
a proxy for interference contamination. Masking all channels for
which the spectral moment of choice is deemed high constitutes
no guarantee that RFI has been eliminated. The ground truth, i.e.
which exact sections of data are affected by RFI, is never available
in practice. The only rigorous way to judge the efficacy of an RFI
mitigation method is by measuring how it improves the tangible
outcome of the scientific experiment being conducted. In a search
for radio transients, one wants to maximize the number of detected
pulses from genuine sources while minimizing the number of false
positives. In this section, we set out to measure how IQRM improves
a standard single-pulse search compared to a fixed channel mask,
using observations of known pulsars taken with the LT.

4.1 Experimental setup

In order to test the RFI mitigation efficiency of IQRM, we gath-
ered 30-min long search-mode observations of four known pulsars
recorded with the Lovell 76-m radio telescope at 1.4 GHz, with the
goal of submitting them to a single-pulse search. The observing setup
was the same as described above (Section 3.2), with a time sampling
interval set to T = 256 us. The test sources were PSR B0611+422,
PSR B0919+06, PSR J1819—1458, and PSR B0531+4-21 (the Crab
pulsar), whose parameters are shown in Table 1. These were selected
such that we would be able to detect a large sample of individual
pulses within the combined 2h of data available, and where a
significant fraction of these pulses would be registered with a signal-
to-noise ratio near the typical detection threshold of a transient
search. The processing pipeline consisted of three stages, following
the usual processing model for large-scale radio transient searches:

(i) Search. The data were passed to the GPU-based HEIMDALL
search code (Barsdell 2012); the signal-to-noise ratio threshold was
set to 6, and the search DM range to [0, 350] pccm ™. The default
internal RFI mitigation options of HEIMDALL were enabled, which
consist of narrow-band RFI clipping and a zero-DM filter (Eatough
et al. 2009).

(ii) Automated candidate classification. The candidates returned
by HEIMDALL were passed to FETCH (Agarwal et al. 2020), a radio
transient classifier based on a deep convolutional neural network.

(iii) Manual candidate vetting. The candidates reported as positive
by FETCH were visually inspected; the ones confirmed to be originat-
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Figure 7. Changes in the RFI environment between test pulsar observations
taken with the LT, which underline the need for adaptive time-dependent RFI
masking. The percentage of time intervals masked by IQRM as a function of
channel frequency is shown in blue. The static channel mask shown in grey is
the one commonly used for Lovell L band data and was determined prior to,
and independently of this work (see text). Note that many RFI-contaminated
channels were saturating near the end of the PSR B0919+06 observation
and were thus left unmasked by IQRM, which explains the apparent clipping
of the graph.

ing from the pulsar were given a final positive label, the others were
overruled as negative.

On each test data file, we ran two identical instances of the pipeline,
which processed copies of the data masked with different methods:

(i) One instance processed the original data files with only a static
channel mask applied. This mask is the ‘standard’ for the LT at
1.4GHz and was determined independently of the present work,
mainly via visual inspection of candidates produced by FRB searches
conducted with the same backend (Rajwade et al. 2020; Mickaliger
et al. (in preparation)]

(ii) The other instance processed copies of the data files that had
first been cleaned with the IQRM APOLLO implementation, where
we used |ACF1]| as the contamination metric. No static mask was
applied.

A comparison of the static channel mask with the average IQRM
mask inferred for each test pulsar observation can be found in Fig. 7,
where changes of the RFI environment between observations are
evident.

4.2 Results

The outcome of the search is plotted in detail in Fig. 8, where for
each pulsar and channel masking method, the candidates reported
as positive by FETCH and confirmed to be genuine pulses by visual
inspection are shown in a DM versus time plane as blue circles. Grey
crosses denote the candidates labelled as negatives by FETCH, most
of which emerge from RFI that was not entirely masked. Table 2
shows the total number of confirmed pulses and negative candidates
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produced using either RFI mitigation method. Lastly, the confirmed
detections from both pipelines were grouped in time and from there
it was determined which pulses were detected by both pipelines, and
which were exclusively found by either of them. The outcome of
this analysis is shown in Fig. 9 as a set of Venn diagrams (one for
each test source) and a histogram showing the signal-to-noise ratio
distribution of the pulses found only by one of the pipelines.

From the overall number of positive and negative candidates, it
is apparent that replacing the commonly used Lovell static channel
mask by IQRM is clearly beneficial and that there is no trade-off
in doing so, at least in a statistical sense: for every test source,
less negative candidates are reported by the search code and, more
importantly, a significantly larger number of genuine pulses are
found. For all sources combined, there is an overall threefold decrease
in the negative candidate rate and a nearly threefold increase in the
number of astrophysical events detected. However, IQRM does not
achieve a perfect result considering that there is a small number of
false negatives, i.e. there are 10 pulses in total that were detected
with the static mask but not with IQRM. Out of these 10 events,
3 were labelled as negative by the classifier despite having been
found with a marginally higher S/N in the IQRM pipeline, while
the other 7 were not detected by the search code. After further
inspection of these 7 exclusive detections by the static mask pipeline,
3 were found to have been the product of a chance alignment of
the pulse with unmasked narrow-band RFI, which was removed by
IQRM. Considering that masking different channels perturbs both
the calculation of the detection statistic and the output value of a
machine-learning classifier, it is not reasonable to expect a false
negative rate of zero even when switching to an RFI mitigation
scheme that is clearly superior on average; however, it is reasonable
to expect the false negatives to have signal-to-noise ratios close to the
detection threshold. Here, all the false negatives are arguably faint,
the brightest one having been reported with S/N = 8.5. In contrast,
a total of 8 pulses with S/N in excess of 15 were missed by the static
mask pipeline; all but one are due to mislabeling by the classifier,
which was most probably an effect of the residual RFI present in the
candidate plots on which it operates.

It is also worth discussing briefly two experimental outcomes that
significantly deviate from the average in Table 2. First, the larger than
average increase in genuine pulse detections for PSR B0611+22
is worth mentioning. We attribute it to the fact that, during this
observation, the vast majority of pulses from the source had signal-
to-noise ratios (SNRs) concentrated near the threshold of the search
code, which was set to 6. In this regime, the consistent increase
in SNR provided by the use of IQRM pushed dozens of pulses
just above the detection threshold. Secondly, the exceptionally large
decrease of 96 per cent in negative candidates in the PSR B0531+21
observation; closer inspection of the data showed that in this case,
most candidates produced in the static mask run are caused by the
RFI source occupying the 1450-1470-MHz frequency range, which
manifests itself as a square wave with a period usually equal to twice
the time sampling interval. This interference source was active in
other observations, for example in the PSR B0611+22 one, which
can be seen in Fig. 5, where it did not cause a significant portion
of the spurious candidates; however, it was unusually bright during
the PSR B0531+21 observation, and the fact that the incriminated
frequency band is not part of the static channel mask had a significant
impact. In contrast, IQRM nearly always masked this portion of the
spectrum.
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Figure 8. Summary plot of the test single-pulse searches. The four known pulsars in Table 1 were observed for 30 min with the Lovell 76-m telescope at L
band, and the resulting data were searched with two distinct pipelines: one using a static channel mask, and the other using IQRM instead. Both pipelines
were otherwise identical. Confirmed pulse detections are shown as blue circles, with the DM of the pulsar shown as horizontal dashed lines. Grey crosses
correspond to candidates labelled as negatives by the FETCH classifier. Time is measured in seconds since the start of each 30-min observation. All marker sizes
are proportional to the signal-to-noise ratio of the event as reported by the HEIMDALL search code. The total number of pulses and negative candidates for each
case is reported in Table 2. Further analysis of which pulses were found by either or both pipelines can be found in Fig. 9.

5 DISCUSSION AND CONCLUSION

Implementing effective RFI mitigation is now a necessity on any
radio telescope; the task is made even more challenging on recent
massively multibeam systems where real-time processing is required.
The widely used static channel masks cannot effectively cope with the
RFI environment variations as a function of pointing position or time
of the day for example. We have introduced IQRM, an algorithm
that infers a time-dependent, adaptive channel mask directly from

consecutive blocks of search-mode data. Our results show that it
fulfils all three desirable characteristics for use in real-time searches
with modern massively multibeam systems. First, it runs much faster
than real time (approximately 100 times faster on LT data, with a
single CPU core), and it should thus be possible to integrate it into
any existing data processing pipeline without measurably affecting
the speed of the whole search process. Secondly, in a radio transient
search, IQRM is able to largely reduce the number of false positives
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Table 2. Summary of candidate numbers produced by the test single-pulse searches. Using IQRM instead of the static
channel mask resulted in both a reduction in the number of spurious candidates reported, and in a significantly increased

number of astrophysical events identified.

Confirmed pulse detections

Negative candidates

Source Static mask  IQRM Change Static mask IQRM Change
PSR B0531+21 51 106 +108 per cent 7079 312 —96 per cent
PSR B0611+22 19 95 +400 per cent 2883 2423 —16 per cent
PSR B0919+06 5 13 +160 per cent 1442 941 —35 per cent
PSR J1819—1458 3 9 +200 per cent 1134 629 —45 per cent
Total 78 223 +-186 per cent 12538 4305 —66 per cent
PSR B0O531+21 PSR B0611+22
%0 S/N Distribution of Exclusive Pulse Detections
\ & I Found only with IQRM
701 Found only with Static Mask
48 3 14 5
. > 60
50
E
PSR B0919+06 PSR J1819-1458 kel

v co

10 12 14 16 18 20 22
S/N

Figure 9. Left-hand panel: Venn diagrams showing the number of confirmed pulses detected by either or both pipelines, for each test source separately. Pulses
found exclusively by the IQRM pipeline are shown in blue on the left-hand side of each diagram, while those found only by the static mask pipeline are shown
in orange on the right-hand side. The overlapping area in beige represents pulses detected by both. Right-hand panel: reported signal-to-noise ratio distribution

of exclusive pulse detections for all sources combined.

but also enhance the S/N of genuine astrophysical events; on LT
data, the number of individual pulses detected from a set of four
known pulsars increased by an average factor of 3 when replacing the
standard, commonly used static channel mask by IQRM. Lastly, the
algorithm is non-parametric and should thus transfer well between
different telescopes. It must be noted, however, that the transfer is not
entirely trivial, as one important task is still left to the user: finding a
spectral moment or statistic that correlates well with the presence of
RFI on the observing system at hand. Our analysis above indicates
that the correct choice depends chiefly on the dynamic range of the
input data. We found that on MeerKAT, the specific method used
to determine the data digitisation levels is such that the standard
deviation of the data in a frequency channel is an excellent proxy
for RFI contamination, and a natural choice as the IQRM input.
On the LT, however, the dynamic range of the data was found to
be unexpectedly reduced in the presence of strong RFI bursts, due
to a technical limitation of the low-noise amplifiers; this motivated
using the spectral autocorrelation of the data as an input to IQRM
instead. With that in mind, the IQRM C++ implementation provides
multiple spectral statistics to choose from. The code is modular and
users may add new ones if need be.

Much like all existing techniques, IQRM is not universally effec-
tive against all forms of RFI and is primarily used as a bright narrow-
band interference masking algorithm. Its main limitation is that the
estimator it uses to infer the acceptable range for its input spectral
statistic [equation (5)] implicitly assumes that at least 50 per cent of
the channels are clean at any point in time; the method becomes less
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effective otherwise and masks less data than expected, a situation
that was found to occasionally occur on LT data. A possible solution
would be to add a short-term memory to the algorithm, i.e. take into
account the spectral statistics of past data blocks when determining
the acceptable range for said statistic in the most recent block; this
could help in making the correct decision when all channels become
temporarily contaminated (see Fig. 5). Another potential application
of IQRM would be to use the outlier detection algorithm on the data
integrated in time, i.e. the zero-DM time series. This could make it
useful against broad-band, non-dispersed RFI pulses, much like the
now widely used zero-DM filter devised by Eatough et al. (2009),
but without systematically reducing the S/N of genuine, low DM
astrophysical events. The two aforementioned extensions will be
considered for a later update of the IQRM APOLLO implementation.
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