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A B S T R A C T 

In a search for short-time-scale astrophysical transients in time-domain data, radio-frequency interference (RFI) causes both 

large quantities of false positive candidates and a significant reduction in sensitivity if not correctly mitigated. Here, we propose 
an algorithm that infers a time-variable frequency channel mask directly from short-duration ( ∼1 s) data blocks: the method 

consists of computing a spectral statistic that correlates well with the presence of RFI, and then finding high outliers among the 
resulting values. For the latter task, we propose an outlier detection algorithm called Inter-Quartile Range Mitigation (IQRM), 
which is both non-parametric and robust to the presence of a trend in sequential data. The method requires no training and can, in 

principle, adapt to any telescope and RFI environment; its efficiency is shown on data from both the MeerKAT and Lo v ell 76-m 

radio telescopes. IQRM is fast enough to be used in a streaming search and has been integrated into the MeerTRAP real-time 
transient search pipeline. Open-source PYTHON and C ++ implementations are also provided. 

Key words: methods: data analysis – pulsars: general – fast radio bursts. 
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 I N T RO D U C T I O N  

adio-frequency interference (RFI) broadly refers to all signals 
hat ne gativ ely impact radio astronomical observations. While the 
ast majority emanates from artificial sources, naturally occurring 
henomena such as lightning can regularly affect some observatories 
s well (Sokolowski, Wayth & Lewis 2015 ). In radio transient and
ulsar searches, idealized data consist of the superposition of a 
eak astrophysical signal with uncorrelated Gaussian noise in all 

requency channels. In this case, the theoretically optimal detection 
ethod is known both for individual pulses (Cordes & McLaughlin 

003 ) and periodic sources (Morello et al. 2020 ). Search codes thus
enerally work under the assumption of a pure Gaussian noise 
ackground, which is, ho we ver, ne ver realized in practice. The
alculation of the detection statistic is dependent on estimating the 
ean and standard deviation of the background noise from the data; 

his process is perturbed by the presence of RFI, which can act to
educe the estimated signal-to-noise ratio of a genuine source below 

he detection threshold. It is necessary to subtract away or mask 
ndesirable signals from the data before they are searched, in order 
o remain acceptably close to the ideal data assumptions and approach 
he theoretical sensitivity of the instrument. 

RFI mitigation can be performed at all stages of the signal chain,
ith complementary benefits (see e.g. Baan 2010 , for an o v erview).
ne can make a broad distinction between pre-detection techniques, 
hich act on the voltage data stream while it is still available at

ts highest time resolution, and post-detection methods that operate 
n the channelized, two-dimensional (2D) time-frequency data just 
efore they are searched for radio transients and pulsars. The former
 E-mail: vmorello@gmail.com 
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s better suited to removing short bursts of RFI with minimal data
oss; ho we v er, the y are required to handle large volumes of data
n real time and thus tend to be limited to simple thresholding and
eplacement schemes. A notable exception is that interferometric 
rrays may implement an additional technique called spatial filtering 
e.g. Leshem, van der Veen & Boonstra 2000 ), where a null in the
eam pattern can be placed in the estimated direction of a strong
nterference source. 

On the other hand, the detection stage involv es inte grating the
aseband data in time, making weaker sources of RFI accessible 
or removal and reducing the data rate, which in turn enables more
ophisticated processing. Post-detection methods usually attempt to 
lank sections of data across the time and/or frequency dimension 
ased on some specific RFI signatures. Two simple but highly 
opular methods are the application of a fixed channel mask, which
ermanently discards the most RFI-occupied portions of the band, 
nd the so-called zero-dispersion measure (DM) filter of Eatough, 
eane & Lyne ( 2009 ) that aims to subtract away broad-band signals

hat show no cold-plasma dispersion expected from propagation 
hrough the interstellar medium. An entire class of algorithms 
nvolves flagging sections of data based on whether some statistical 
roperty exits the range expected for clean data: for example, a
olling sum o v er multiple time-scales (the SUMTHRESHOLD algorithm 

f Offringa et al. 2010 ), or a higher-order statistical moment (Nita &
ary 2010 ). Convolutional neural networks have also been trained 

o perform intelligent clipping of time-frequency data (e.g. Akeret 
t al. 2017 ). Fourier transforming the data and finding Fourier bins
ith e xcessiv e power is effective against weaker periodic RFI and
ell-suited to periodicity searches (Fridman & Baan 2001 ; Maan, 
an Leeuwen & Vohl 2020 ). 

While there is a trade-off between RFI removal effectiveness and 
 x ecution speed, the pressure to find methods that perform well on

http://orcid.org/0000-0003-0767-6022
http://orcid.org/0000-0002-8043-6909
http://orcid.org/0000-0001-9242-7041
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oth fronts is increasing, and not all the aforementioned methods
re fast enough to be used in a streaming environment. Indeed, on
he latest and upcoming generations of radio telescopes, an RFI

itigation algorithm should aim to be: 

(i) Fast enough to be used on massively multibeam systems,
here searching large data streams in real time has now become
 fundamental requirement (e.g. CHIME/FRB Collaboration et al.
018 ; Rajwade et al. 2021 ) 
(ii) Able to increase the detection probability of genuine sources

nd reduce the spurious candidate rate at the same time 
(iii) Transferable between telescopes with limited adjustments to

he algorithm’s parameters, which w ould mak e it more useful to the
ommunity as a whole and a v oid duplication of work. 

The challenge lies in developing methods that fulfil all three
riteria. 

Static channel masks may be a blunt tool, but are extremely easy
o implement and optimal against portions of the band permanently
idden with RFI. Ho we ver, the shape and portion of the band occupied
y RFI vary as a function of pointing position and of time; a common
ituation is that a few channels are permanently unusable, while most
f them can be occasionally affected with narrow-band RFI; this is
rguably the case on MeerKAT, for example (Sihlangu, Oozeer &
assett 2020 , see also section 3.1). The ability to automatically
nd accurately adapt a channel mask to the current data on a
ime-scale of a few seconds is quite desirable; here, we propose
n algorithm called Inter-Quartile Range Mitigation (IQRM) that
erforms this task much faster than real time; IQRM stands for Inter-
uartile range RFI Mitigation, for reasons that will become clear
elow. 
The outline of the paper is as follows: In Section 2, we explain the

ationale behind the design of IQRM before describing the algorithm
n detail. In Section 3, we test the ability of IQRM to derive a time-
ariable channel mask from spectral statistics of data obtained with
he MeerKAT and Lo v ell radio telescopes; its e x ecution speed is
lso measured. We then e v aluate the impact of IQRM in a blind
earch for single pulses in Section 4; using o v er 2 h of known pulsar
bservations taken with the Lo v ell Telescope (LT), we compare the
umber of genuine astrophysical pulses and false positives reported,
ith and without IQRM applied. We conclude in Section 5 after
iscussing the performance, limitations and potential extensions to
he method. 

 M E T H O D  

.1 General principle 

earch-mode data is a sequence of dynamic spectra recorded with
ntegration times of typically a few tens to hundreds of microseconds.
iven a short-duration block of such time-frequency data, the goal
f IQRM is to identify all frequency channels affected by narrow-
and RFI. The initial step is to reduce the entire block to a single
ummary statistic per frequency channel (i.e. a spectral moment),
nd then to determine for which channels the statistic value is
nlikely to be associated with clean data. Nita et al. have previously
roposed a method where the data are flagged based on their short-
erm spectral kurtosis (Nita et al. 2007 ; Nita & Gary 2010 ), for
hich the acceptable range of values can be determined from first
rinciples. IQRM could be described as a generalisation attempt of
he aforementioned work where: 
NRAS 510, 1393–1403 (2022) 
(i) Any spectral statistic can be used as the basis to decide which
hannels are contaminated by RFI, the only requirement being that
igher values must indicate a higher probability of contamination. 
(ii) The rejection threshold value for the statistic is inferred from

he data and assumed to v ary slo wly with observing frequency; in
ther words, an arbitrary frequency-dependent background trend or
baseline’ is expected to be present in the sequence of spectral statistic
alues. 

Anything that alters the ef fecti ve system temperature unequally
cross the band has the potential to generate such a baseline, for
xample imperfect bandpass filters, variations in receiver response,
he diffuse Galactic radio emission (e.g. Haslam et al. 1981 ), the
resence of a bright radio source with a steep spectral index in the
elescope field of view, or broad-band RFI. The fundamental idea
f IQRM is to subtract away the baseline problem by taking the
o-called lagged differences of the spectral moment values, and then
nding high outliers in these difference values, which is a simpler

ask. 

.2 The IQRM algorithm 

ormally, the IQRM algorithm takes as its input an ordered sequence
f real-valued numbers ( x i ) 

n −1 
i= 0 and identifies values significantly

arger than their close neighbours in the sequence. i represents a
hannel index and x i the value of the chosen spectral moment (the
easure of RFI contamination) in that channel. IQRM has two

djustable parameters: 

(i) The radius r : the distance (expressed in number of sequence
lements) to the furthest neighbour being considered when e v aluating
he outlier status of a given data point in the sequence. 

(ii) The threshold t : a significance level (expressed in number of
aussian sigmas) which controls by how much a data point must

xceed one of its neighbours to be categorized as an outlier. 

The first step of the algorithm is to calculate a set of lagged
ifferences of the input sequence ( x i ). Here, the lagged difference of
 x i ) for a given lag k ∈ Z is defined as thesequence ( � 

k 
i ) 

n −1 
i= 0 such that 

 

k 
i = x i − x i−k , (1) 

here the boundary conditions are handled by setting x j = x 0 for j <
 and x j = x n − 1 for j ≥ n in the expression above. The usefulness of
he lagged difference operation when a trend is present is illustrated
n Fig. 1 . It is necessary to calculate lagged differences using multiple
rial values for k so that a set of consecutive outliers with very similar
alues does not escape detection. Trial lag values are selected within
he range [ − r , + r ], excluding 0. To save computation time, we do not
ry every possible integer value in that range, but instead, arrange the
rial values in a geometric progression using the following recurrence
elation: 

k 0 = 1 

k m + 1 = max ( � 1 . 5 × k m 

� , k m 

+ 1) , 
(2) 

here �� denotes the floor function, and noting that all −k m are also
dded to the sequence of trial values. For example, the sequence
orresponding to r = 10 is ( − 9, −6, −4, −3, −2, −1, 1, 2, 3, 4, 6,
nd 9). The geometric progression factor of 1.5 has been chosen as
 reasonable compromise between masking accuracy and execution
peed, but it has not been subjected to a rigorous optimization process
n test data. 
Then, for each trial lag value k separately, high outliers in the

equence ( � 

k 
i ) 

n −1 
i= 0 are then identified using a criterion similar to
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Figure 1. The fundamental idea of IQRM: the lagged difference operation 
eliminates a slowly varying trend in sequential data and facilitates the 
procedural identification of outliers. Top panel: artificially generated input 
data. These are the sum of two sine functions and Gaussian noise; an additional 
40 points selected at random were then incremented by an exponentially 
distributed random variate, to simulate high outliers. Bottom panel: lagged 
difference of the input data (equation 1) with a lag of k = 1 bin; the red dashed 
lines represent μk ± 3 × σ k , i.e. the acceptable range of values empirically 
inferred using the robust mean and scale estimators of equations (3) and (4). 
Points highlighted in orange are those deemed abnormally larger than their 
previous neighbours according to equation (5). IQRM repeats this process 
for multiple values of the lag k in order to o v ercome cases where consecutive 
points are outliers with similar values. 
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ukey’s rule for outliers, also known as Tukey’s fences (Tukey 1977 ).
ere, we assume that the � 

k 
i values (for fixed k ) contain: 

(i) A majority of inliers that follow some underlying distribution 
ith mean μk and standard deviation σ k . 
(ii) A minority of outliers that span a range of values much greater

han σ k 

μk and σ k need to be measured using robust estimators, i.e. that 
re not easily biased by outliers. We use the following: 

k = Q k (0 . 5) , (3) 

k = 

Q k (0 . 75) − Q k (0 . 25) 

� 

−1 (0 . 75) − � 

−1 (0 . 25) 
≈ IQR 

1 . 349 
, (4) 

here Q k ( z) denotes the z-th empirical quantile of the � 

k 
i , and

 

−1 is the inverse cumulative distribution function of the normal 
istribution. In other words, the mean of the inliers is taken to be the
edian of the � 

k 
i ; the standard deviation of the inliers is taken to be

roportional to the empirical inter-quartile range IQR = Q k (0.75) −
 k (0.25), where we used the fact that the inter-quartile range of the
ormal distribution is IQR norm 

= � 

−1 (0.75) − � 

−1 (0.25) ≈ 1.349. 
 or ev ery pair ( i , k ), we then test the condition 

 � 

k 
i − μk ) > t × σk , (5) 

hich if true denotes that x i is abnormally larger than x i − k , but on
ts own, this does not enable discrimination between cases, where 
 i is a high outlier that should be flagged, and where x i − k is a low
utlier that should be ignored. Flagging any x i for which equation (5)
s true for at least one trial lag value k would create a pathological
ase, where the algorithm would mask the entire neighbourhood of 
very low outlier against any common sense. Another processing 
tep, illustrated on a simple example in Fig. 2 , is required to a v oid
his situation: when equation (5) is true, we state thereafter that x i − k 

asts a ‘vote’ against x i , which we note ( i − k) −→ i. Once collected,
he full set of votes can be represented as the edges of a directed
raph, where the nodes are array indices. A vote i −→ j is considered
alid if and only if i has cast strictly less votes in total than j has
eceiv ed. An y data point that receives at least one valid vote is finally
arked as an outlier, and the algorithm returns a binary mask with

he same size as the input data sequence. The o v erall effect of IQRM
n real data is shown on an example pulse from a known pulsar
ecorded with MeerKAT at L Band (Fig. 3 ). 

.3 Practical implementation and usage 

 minimal open-source implementation of IQRM in the PYTHON 

anguage has been made available. 1 It is minimal in the sense
hat it provides only the outlier flagging capability specified in 
ection 2.2. Furthermore, identifying sections of data affected by 
FI is not sufficient; this information must then be provided to a

earch code. The difficulty that arises here comes from the fact
hat IQRM is meant to generate a channel mask that varies in
ime: it reads consecutive data blocks of a few seconds in length,
alculates their spectral standard deviation (or other contamination 
tatistics of choice), and obtain a mask adapted to each block by
pplying IQRM. Ho we ver, with the notable exception of PRESTO

Ransom, Eikenberry & Middleditch 2002 ), the dedispersion stages 
f most widely used search pipelines are not designed to deal
ith time-variable masks, and instead only accept a fixed list of

hannels to ignore; such is the case of SIGPROC (Lorimer 2011 ),
EIMDALL , 2 PEASOUP , 3 and ASTROACCELERATE (Ad ́amek & Armour 
020 ). In many use cases, it is thus necessary to replace the bad
ections of the original data with adequate substitution values, before 
ending the edited data for processing. For that purpose, we provide
 C + + implementation, IQRM APOLLO , 4 that performs the full
equence of operations: reading, calculation of the spectral moment, 
agging, and replacing. It currently processes SIGPROC filterbank files 
nd saves cleaned copies, noting that interfaces to other formats can
e added. There are three possible replacement policies for flagged 
ata: 

(i) Replace by a constant value of the user’s choice. 
(ii) Replace by the mean of the medians of the non-flagged 

hannels within the block. 
(iii) Replace by artificial Gaussian noise, with mean and variance 

qual to the global median and global variance of the non-flagged
hannels within the block. 

Mean-of-medians is the default and recommended option, noting 
hat the code is modular and other data replacement strategies can be
mplemented. 

 TESTS  O N  SPECTRAL  STATISTIC  SAMPLES  

n this section, we test the efficacy of the IQRM masking process
escribed in the previous section on spectral statistic samples 
btained from real-world observations. 

.1 MeerTRAP 

eerKAT is an array of 64 antennas in the Karoo region of South
frica (Jonas & MeerKAT Team 2016 ), each 13.5 m in diameter and
MNRAS 510, 1393–1403 (2022) 

art/stab3493_f1.eps
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Figure 2. Illustration of the IQRM ‘voting’ system on a simple test case. Left-hand panel: input data, deliberately generated so that all non-zero lagged 
differences are considered significant by the algorithm [through equation (5)]. IQRM was then run with a threshold of 3.0 and a radius of 2 channels, which 
corresponds to trial lag values of { −2, −1, + 1, and + 2 } . Middle panel: summary of votes cast by channel indices on their neighbours, represented as a directed 
graph. A vote i −→ j is considered valid if and only if i has cast strictly less votes in total than j has received; this ensures that neighbours of low outliers are not 
abusi vely flagged. Here, e very vote cast by channel 6 is invalid. Right-hand panel: final vote graph after pruning invalid votes; only channel 4 gets marked as a 
high outlier, reasonably so. 

Figure 3. A single pulse from RRAT J1226 −3223 recorded with MeerKAT at L Band during the commissioning phase of the MeerTRAP transient search 
backend (see Section 3.1 for a system description) in July 2019. Left-hand panel: original time-frequency data block; here, the spectral standard deviation of the 
block was provided as the input to IQRM, where the radius parameter was set to r = 100 and the threshold to t = 3.0. Right-hand panel: same data where the 
frequency channels flagged by IQRM are shown in blue; the colour scale for valid data and the axis ranges are otherwise unchanged. 17 per cent of the channels 
were masked in this example. 
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ith the capacity to host four different receivers; both an L band
856–1712 MHz) and a UHF (544–1088 MHz) receiver are currently
perational. The raw voltage signals are digitized at the antennas and
hen streamed to the central correlator and beamformer (CBF), which
andles channelization followed by correlation and/or beamforming.
he CBF is designed to co v er the needs of most telescope users
hile remaining cost-ef fecti ve and does not feature a massively
ultibeam mode for radio transient searches, which greatly benefit

rom a wide field of vie w. Ho we ver, MeerKAT can host additional
ackends called USEs (for user-supplied equipment) that may receive
 copy of the antenna signals via the CBF and implement additional
unctionality. MeerTRAP is the commensal, real-time radio transient,
nd pulsar search processor for the MeerKAT radio telescope. It is
he association of two sets of user-supplied equipment: 

(i) FBFUSE: a GPU-based beamforming cluster capable of tiling
he primary field of view of the telescope with o v er a thousand tied-
rray beams (Barr 2018 ). 

(ii) TUSE: a 66-node search cluster that ingests the beamformed
ata streams from FBFUSE and searches them for radio transients in
eal time. The raw data are immediately discarded after processing
NRAS 510, 1393–1403 (2022) 
ue to their large volume, and only a limited number of data products
re kept. 

A more detailed system description can be found in Rajwade et al.
 2021 ). The configuration of both components is flexible, but in most
bservations, they are set so that TUSE searches 768 beams tiled in a
exagonal pattern centred on boresight position, and where the data
re digitized to 8-bit precision, contain 1024 frequency channels and
ave a sampling interval of either 306 μs (at L band) or 480 μs (at
HF). In parallel to the search pipeline, each TUSE node runs a so-

alled bandpass monitor that measures and records spectral statistics
f the data for every beam every 6 s, which has provided the test
ata set for this section. A very important detail to mention here is
ow the mean and scale of the beamformed data are set on FBFUSE
efore they are 8-bit digitized. The process is as follows: 

(i) A command to initiate a data rescaling is received, which
appens when moving to a new source or at the user’s request. 
(ii) FBFUSE waits until its first input ring buffer block has been

lled with data from the CBF. The block has three dimensions:
ntenna index, observing frequency, and time. It contains approxi-
ately 0.3 s worth of data. 

art/stab3493_f2.eps
art/stab3493_f3.eps
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Figure 4. Test of IQRM on 5 h of MeerTRAP L Band, 1024-channel data with a 306.24 μs sampling interval. Top panel: spectral standard deviation of the 
data stream from a single tied-array beam as a function of time, measured on consecutive 6-s data blocks. The beamformer aims to produce 8-bit sampled data 
scaled to a mean of 127 and a standard deviation of 7.0, which in practice happens only in channels dominated by background noise; higher values are a reliable 
indicator of RFI (see Section 3.1 for further details). The colour scale has been clipped for readability; some channels can reach a standard deviation > 100. 
Vertical lines correspond to short processing interruptions caused by target changes, and adjustments of the beam tiling pattern on the sky that occur every 
10 min. Bottom panel: same plot after running IQRM on every spectral standard deviation sample (i.e. every column in the top panel plot), using a radius r = 

100 and a threshold t = 3.0. Channels flagged by IQRM are shown in orange. 
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(iii) The complex gain corrections are applied to the block. 
(iv) The mean and standard deviation of the block are calculated 

or each channel across all antennas taken together. 
(v) Using these estimates, a scale and an offset term are chosen 

uch that the beamformed data has an expected mean of 127 and a
tandard deviation of 7.0. The scale and offset terms are kept constant
nd applied to all subsequent blocks until the next rescaling command 
s received. 

The calculation of the spectral scale and offsets assumes that the 
nput data is idealized Gaussian noise: that is, the addition of N
ignals with unit scale from N independent antennas is expected to 
esult in a beamformed output with a scale of 

√ 

N . Ho we ver, this
ssumption breaks down in any channel containing highly directional 
FI: in these, the signals from distinct antennas retain a certain level
f coherence, and the output scale is thus significantly larger than 
 

N . Because of this specific data scaling procedure, the spectral 
tandard deviation of the beamformed data received by TUSE has 
een found to be an excellent indicator of RFI contamination, and 
an be passed directly to IQRM. The efficacy of IQRM on MeerKAT
s shown in Fig. 4 , on a 5-h sequence of spectral standard deviation
amples acquired at the L band. 
We note that a few other spectral statistics were tried in con-
unction with IQRM on MeerTRAP data, where the ef fecti veness
f the masking was assessed visually on a sample of known pulsar
etections by comparing the data before and after masking as in
ig. 3 . These were the absolute values of spectral skewness, the
bsolute value of spectral excess kurtosis, and the absolute value of
he spectral autocorrelation with a 1-sample delay [see Section 3.2 
nd equation (6) below for a definition]. Absolute values have to
e taken for all three to respect the requirement for use with IQRM
s stated in Section 2.1, namely that a higher value must indicate
 higher probability of contamination. On average, the spectral 
tandard deviation was found to leave fewer contaminated channels 
nmasked. Rigorously exploring more statistics on a larger sample 
f data remains to be done. 

.2 Lo v ell 76-m radio telescope 

he 76-m LT is located at the Jodrell Bank Observatory in the
K. It lies approximately 25 km from Manchester’s city centre and
5 km away from its international airport. The RFI environment is
hus particularly adverse compared to MeerKAT or any telescope 
ocated in a sparsely populated, radio-quiet area. The observing 
MNRAS 510, 1393–1403 (2022) 
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Figure 5. Application of IQRM to a 32-min LT observation of PSR B0611 + 22, with a 256 μs sampling interval and 672 frequency channels. On Lo v ell data, 
the spectral standard deviation is a much less powerful RFI indicator than on MeerKAT (see Section 3.2 for an explanation), and we have thus selected another 
spectral statistic: the absolute value of the autocorrelation, with a delay of 1 sample. Top panel: spectral autocorrelation measured on consecutive 0.8-s blocks. 
Bottom panel: same data where IQRM has been applied to every column in the top panel; we used a threshold t = 3.0 and radius r = 67, i.e. 10 per cent of the 
number of channels. Flagged channels are shown in orange. A pathological case of the algorithm is visible on a few short time intervals here: it fails when a 
majority of channels are dominated by RFI. 
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ystem has been previously described by Rajwade et al. ( 2020 ).
he ef fecti ve observing band spans 336 MHz between 1396 and
732 MHz, divided into 672 frequency channels, and the data are
igitized to 8-bit precision. In contrast to MeerTRAP, ho we ver, the
pectral standard deviation of the data does not correlate well with
FI contamination here; the variance of the data was often found

o be smaller in interference-ridden channels. The most plausible
xplanation is that the low-noise amplifiers of the receiver operate
utside of their linear range in the presence of strong RFI, a regime
eyond which their output signal power may become a decreasing
unction of input signal power, contrary to design expectations
Mickaliger, pri v ate communication). It was thus necessary to use
nother spectral moment as an input to IQRM. After testing the
ame set of spectral statistics that were tried on MeerTRAP data, we
ound that the best alternative was the absolute value of the spectral
utocorrelation with a 1-sample delay, | ACF1 | hereafter defined as: 

 ACF1 | = 

∣
∣∑ n −2 

i= 0 ( X i+ 1 − μ)( X i − μ) 
∣
∣

nσ 2 
, (6) 

here X i denotes a sequence of n samples within a given frequency
hannel, and μ and σ 2 are the empirical mean and variance of the
 i , respecti vely. | ACF1 | takes v alues in the range [0, 1] and has all

he required properties to be used as a proxy for RFI contamination
ith IQRM: 
NRAS 510, 1393–1403 (2022) 
(i) Higher values indicate a larger departure from ideal uncorre-
ated Gaussian noise, for which the expected ACF is 0 regardless of
ime lag. 

(ii) It has a computational cost only marginally larger than the
pectral standard deviation, which makes it practical for real-time
rocessing. 
(iii) It is independent from the scale of the data, and thus

nsensitive to changes in spectral standard deviation caused by the
ccasional level compression issues faced on LT data. 

A test on a 32-min sequence of spectral | ACF1 | from an ob-
ervation of PSR B0611 + 22 can be seen in Fig. 5 , and shows
hat IQRM can be used with different spectral statistics as an
nput. There are, ho we ver, short time periods in LT data during
hich they become essentially worthless across the whole band,

s can be seen, for example around 1100 s after the start of the test
bservation. This is a case that IQRM cannot properly handle by
esign, since a fundamental assumption is that the majority of the
requency channels are reasonably clean. In this case, IQRM tends
o recommend leaving most or all of the observing band unmasked,
hereas the sensible action would be to discard the data block

ntirely. 

art/stab3493_f5.eps


IQRM: real-time, non-parametric RFI masking 1399 

Figure 6. Benchmarks of the IQRM APOLLO implementation. Using a single 
CPU core, we ran the code on several test data files containing artificial 
Gaussian noise, with a sampling time τ = 256 μs and a number of frequency 
channels ranging from 128 to 16 384. The data were processed in consecutive 
blocks of 4096-time samples, approx. 1.05 s long, and a channel mask 
calculated for each block. We separately measured the average time consumed 
by the calculation of the spectral statistic (we tested standard deviation and 
| ACF1 | separately), and by the IQRM masking algorithm per se . The graph 
shows the ratio between the ef fecti ve data length and the e x ecution time 
of each task, i.e. how much faster than real time each task would run in a 
streaming environment. 
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Table 1. Test pulsars chosen for the single-pulse search experiment with the 
Lo v ell 76-m telescope at L band. DM denotes the DM and S 1400 the average 
flux density at 1400 MHz. These sources were chosen so that: a) a large 
sample of detectable single pulses would be recorded in a short amount of 
observing time (30 min for each source), and b) the majority of detectable 
pulses would be near the typical detection threshold of a search, in a regime 
where the benefits of impro v ed RFI mitigation are most evident. The data in 
this table are from the ATNF pulsar catalogue (Manchester et al. 2005 ). 

Pulsar Period (ms) DM ( pc cm 

−3 ) S 1400 ( mJy ) 

PSR B0531 + 21 33 .4 56 .77 14 
PSR B0611 + 22 334 .9 96 .91 3.3 
PSR B0919 + 06 430 .6 27 .30 10 
PSR J1819 −1458 4263 .2 196 .0 N/A 

4
T

A
i
i
a
w
n  

w  

i  

m  

o
f  

p
p  

a
u

4

I  

e
r  

g  

w  

i  

P  

p  

s  

p  

s  

t
s
t

s
s  

i
c
e

b  

t

b  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/1393/6449380 by U
niversity of M

anchester user on 11 January 2022
.3 Execution speed 

e measured the run times of the IQRM APOLLO implementation on 
earch-mode data files with different numbers of frequency channels, 
ll containing artificially generated Gaussian noise. These test files 
ere 60 s long with a sampling interval of τ = 256 μ s, and with
 number of channels equal to all powers of two between 256 and
6384 inclusive. We set the IQRM parameters to a radius equal to
0 per cent of the number of channels and a threshold of t = 3.0. The
ata were processed in blocks of 4096 samples (1.05 s long), and for
ach block, a channel mask was calculated. We ran the code twice
n each file, once using spectral standard deviation as the spectral 
tatistic of choice, and once using the spectral autocorrelation with 
 lag of 1 sample ( | ACF1 | as described abo v e). In both cases, we
ecorded separately the total time taken by the calculation of the 
pectral statistic and the total time consumed by the IQRM algorithm 

er se , i.e. the process described in Section 2.2. A single Intel R © Xeon
5-2630 CPU core was used. 
The benchmarks results can be seen in Fig. 6 ; rather than

isplaying the raw execution times, the ratio between the total 
ata duration and the total run time of each task is shown, which
ho ws ho w much faster than real time they can be completed in a
treaming environment such as MeerTRAP. We note that these results 
ust be linearly extrapolated for a data sampling interval different 

rom τ = 256 μ s; indeed, the run time-scales linearly with the total
umber of time samples, but not necessarily with the data duration. 
n both the MeerTRAP and LT observing systems described abo v e,

QRM can be run approximately 100 times faster than real time on
 single core of a recent CPU. It should be noted that the calculation
f the spectral statistic dominates the total cost, and in principle, this
ask could be significantly accelerated using many-core architectures 
ompared to the single CPU core used here. A further speedup of
ne order of magnitude may be achie v able, assuming that computing
esources are plentiful enough. 
 TESTS  O N  SINGLE-PULSE  S E A R C H E S  W ITH  

H E  LOVELL  TELESCOPE  

lthough the experiments done in the previous section are an 
mportant visual check of the IQRM algorithm behaviour on its 
nput, the spectral moment passed to the algorithm constitutes only 
 proxy for interference contamination. Masking all channels for 
hich the spectral moment of choice is deemed high constitutes 
o guarantee that RFI has been eliminated. The ground truth, i.e.
hich exact sections of data are affected by RFI, is never available

n practice. The only rigorous way to judge the efficacy of an RFI
itigation method is by measuring how it impro v es the tangible

utcome of the scientific experiment being conducted. In a search 
or radio transients, one wants to maximize the number of detected
ulses from genuine sources while minimizing the number of false 
ositives. In this section, we set out to measure how IQRM impro v es
 standard single-pulse search compared to a fixed channel mask, 
sing observations of known pulsars taken with the LT. 

.1 Experimental setup 

n order to test the RFI mitigation efficiency of IQRM, we gath-
red 30-min long search-mode observations of four known pulsars 
ecorded with the Lo v ell 76-m radio telescope at 1.4 GHz, with the
oal of submitting them to a single-pulse search. The observing setup
as the same as described abo v e (Section 3.2), with a time sampling

nterval set to τ = 256 μs. The test sources were PSR B0611 + 22,
SR B0919 + 06, PSR J1819 −1458, and PSR B0531 + 21 (the Crab
ulsar), whose parameters are shown in Table 1 . These were selected
uch that we would be able to detect a large sample of individual
ulses within the combined 2 h of data available, and where a
ignificant fraction of these pulses would be registered with a signal-
o-noise ratio near the typical detection threshold of a transient 
earch. The processing pipeline consisted of three stages, following 
he usual processing model for large-scale radio transient searches: 

(i) Search. The data were passed to the GPU-based HEIMDALL 

earch code (Barsdell 2012 ); the signal-to-noise ratio threshold was 
et to 6, and the search DM range to [0 , 350] pc cm 

−3 . The default
nternal RFI mitigation options of HEIMDALL were enabled, which 
onsist of narrow-band RFI clipping and a zero-DM filter (Eatough 
t al. 2009 ). 

(ii) Automated candidate classification. The candidates returned 
y HEIMDALL were passed to FETCH (Agarwal et al. 2020 ), a radio
ransient classifier based on a deep convolutional neural network. 

(iii) Manual candidate vetting. The candidates reported as positive 
y FETCH were visually inspected; the ones confirmed to be originat-
MNRAS 510, 1393–1403 (2022) 
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Figure 7. Changes in the RFI environment between test pulsar observations 
taken with the LT, which underline the need for adaptive time-dependent RFI 
masking. The percentage of time intervals masked by IQRM as a function of 
channel frequency is shown in blue. The static channel mask shown in grey is 
the one commonly used for Lo v ell L band data and was determined prior to, 
and independently of this work (see text). Note that many RFI-contaminated 
channels were saturating near the end of the PSR B0919 + 06 observation 
and were thus left unmasked by IQRM, which explains the apparent clipping 
of the graph. 
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ng from the pulsar were given a final positive label, the others were
 v erruled as ne gativ e. 

On each test data file, we ran two identical instances of the pipeline,
hich processed copies of the data masked with different methods: 

(i) One instance processed the original data files with only a static
hannel mask applied. This mask is the ‘standard’ for the LT at
.4 GHz and was determined independently of the present work,
ainly via visual inspection of candidates produced by FRB searches

onducted with the same backend (Rajwade et al. 2020 ; Mickaliger
t al. (in preparation)] 

(ii) The other instance processed copies of the data files that had
rst been cleaned with the IQRM APOLLO implementation, where
e used | ACF1 | as the contamination metric. No static mask was

pplied. 

A comparison of the static channel mask with the average IQRM
ask inferred for each test pulsar observation can be found in Fig. 7 ,
here changes of the RFI environment between observations are

vident. 

.2 Results 

he outcome of the search is plotted in detail in Fig. 8 , where for
ach pulsar and channel masking method, the candidates reported
s positive by FETCH and confirmed to be genuine pulses by visual
nspection are shown in a DM versus time plane as blue circles. Grey
rosses denote the candidates labelled as ne gativ es by FETCH , most
f which emerge from RFI that was not entirely masked. Table 2
hows the total number of confirmed pulses and ne gativ e candidates
NRAS 510, 1393–1403 (2022) 
roduced using either RFI mitigation method. Lastly, the confirmed
etections from both pipelines were grouped in time and from there
t was determined which pulses were detected by both pipelines, and
hich were e xclusiv ely found by either of them. The outcome of

his analysis is shown in Fig. 9 as a set of Venn diagrams (one for
ach test source) and a histogram showing the signal-to-noise ratio
istribution of the pulses found only by one of the pipelines. 
From the o v erall number of positive and ne gativ e candidates, it

s apparent that replacing the commonly used Lo v ell static channel
ask by IQRM is clearly beneficial and that there is no trade-off

n doing so, at least in a statistical sense: for every test source,
ess ne gativ e candidates are reported by the search code and, more
mportantly, a significantly larger number of genuine pulses are
ound. For all sources combined, there is an o v erall threefold decrease
n the ne gativ e candidate rate and a nearly threefold increase in the
umber of astrophysical events detected. However, IQRM does not
chieve a perfect result considering that there is a small number of
alse ne gativ es, i.e. there are 10 pulses in total that were detected
ith the static mask but not with IQRM. Out of these 10 events,
 were labelled as ne gativ e by the classifier despite having been
ound with a marginally higher S/N in the IQRM pipeline, while
he other 7 were not detected by the search code. After further
nspection of these 7 e xclusiv e detections by the static mask pipeline,
 were found to have been the product of a chance alignment of
he pulse with unmasked narrow-band RFI, which was remo v ed by
QRM. Considering that masking different channels perturbs both
he calculation of the detection statistic and the output value of a

achine-learning classifier, it is not reasonable to expect a false
e gativ e rate of zero even when switching to an RFI mitigation
cheme that is clearly superior on average; ho we ver, it is reasonable
o expect the false negatives to have signal-to-noise ratios close to the
etection threshold. Here, all the false ne gativ es are arguably faint,
he brightest one having been reported with S/N = 8.5. In contrast,
 total of 8 pulses with S/N in excess of 15 were missed by the static
ask pipeline; all but one are due to mislabeling by the classifier,
hich was most probably an effect of the residual RFI present in the

andidate plots on which it operates. 
It is also worth discussing briefly two experimental outcomes that

ignificantly deviate from the average in Table 2 . First, the larger than
verage increase in genuine pulse detections for PSR B0611 + 22
s worth mentioning. We attribute it to the fact that, during this
bserv ation, the v ast majority of pulses from the source had signal-
o-noise ratios (SNRs) concentrated near the threshold of the search
ode, which was set to 6. In this regime, the consistent increase
n SNR provided by the use of IQRM pushed dozens of pulses
ust abo v e the detection threshold. Secondly, the e xceptionally large
ecrease of 96 per cent in ne gativ e candidates in the PSR B0531 + 21
bservation; closer inspection of the data showed that in this case,
ost candidates produced in the static mask run are caused by the
FI source occupying the 1450–1470-MHz frequency range, which
anifests itself as a square wave with a period usually equal to twice

he time sampling interval. This interference source was active in
ther observations, for example in the PSR B0611 + 22 one, which
an be seen in Fig. 5 , where it did not cause a significant portion
f the spurious candidates; ho we ver, it was unusually bright during
he PSR B0531 + 21 observation, and the fact that the incriminated
requency band is not part of the static channel mask had a significant
mpact. In contrast, IQRM nearly al w ays mask ed this portion of the
pectrum. 
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Figure 8. Summary plot of the test single-pulse searches. The four known pulsars in Table 1 were observed for 30 min with the Lovell 76-m telescope at L 
band, and the resulting data were searched with two distinct pipelines: one using a static channel mask, and the other using IQRM instead. Both pipelines 
were otherwise identical. Confirmed pulse detections are shown as blue circles, with the DM of the pulsar shown as horizontal dashed lines. Grey crosses 
correspond to candidates labelled as ne gativ es by the FETCH classifier. Time is measured in seconds since the start of each 30-min observation. All marker sizes 
are proportional to the signal-to-noise ratio of the event as reported by the HEIMDALL search code. The total number of pulses and ne gativ e candidates for each 
case is reported in Table 2 . Further analysis of which pulses were found by either or both pipelines can be found in Fig. 9 . 
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 DISCUSSION  A N D  C O N C L U S I O N  

mplementing ef fecti ve RFI mitigation is now a necessity on any
adio telescope; the task is made even more challenging on recent 
assively multibeam systems where real-time processing is required. 
he widely used static channel masks cannot ef fecti vely cope with the
FI environment variations as a function of pointing position or time 
f the day for example. We have introduced IQRM, an algorithm 

hat infers a time-dependent, adaptive channel mask directly from 
onsecutive blocks of search-mode data. Our results show that it 
ulfils all three desirable characteristics for use in real-time searches 
ith modern massively multibeam systems. First, it runs much faster 

han real time (approximately 100 times faster on LT data, with a
ingle CPU core), and it should thus be possible to integrate it into
n y e xisting data processing pipeline without measurably affecting 
he speed of the whole search process. Secondly, in a radio transient
earch, IQRM is able to largely reduce the number of false positives
MNRAS 510, 1393–1403 (2022) 
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Table 2. Summary of candidate numbers produced by the test single-pulse searches. Using IQRM instead of the static 
channel mask resulted in both a reduction in the number of spurious candidates reported, and in a significantly increased 
number of astrophysical events identified. 

Confirmed pulse detections Ne gativ e candidates 
Source Static mask IQRM Change Static mask IQRM Change 

PSR B0531 + 21 51 106 + 108 per cent 7079 312 −96 per cent 
PSR B0611 + 22 19 95 + 400 per cent 2883 2423 −16 per cent 
PSR B0919 + 06 5 13 + 160 per cent 1442 941 −35 per cent 
PSR J1819 −1458 3 9 + 200 per cent 1134 629 −45 per cent 

Total 78 223 + 186 per cent 12 538 4305 −66 per cent 

Figure 9. Left-hand panel: Venn diagrams showing the number of confirmed pulses detected by either or both pipelines, for each test source separately. Pulses 
found e xclusiv ely by the IQRM pipeline are shown in blue on the left-hand side of each diagram, while those found only by the static mask pipeline are shown 
in orange on the right-hand side. The o v erlapping area in beige represents pulses detected by both. Right-hand panel: reported signal-to-noise ratio distribution 
of e xclusiv e pulse detections for all sources combined. 
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ut also enhance the S/N of genuine astrophysical events; on LT
ata, the number of individual pulses detected from a set of four
nown pulsars increased by an average factor of 3 when replacing the
tandard, commonly used static channel mask by IQRM. Lastly, the
lgorithm is non-parametric and should thus transfer well between
ifferent telescopes. It must be noted, ho we ver, that the transfer is not
ntirely trivial, as one important task is still left to the user: finding a
pectral moment or statistic that correlates well with the presence of
FI on the observing system at hand. Our analysis abo v e indicates

hat the correct choice depends chiefly on the dynamic range of the
nput data. We found that on MeerKAT, the specific method used
o determine the data digitisation levels is such that the standard
eviation of the data in a frequency channel is an excellent proxy
or RFI contamination, and a natural choice as the IQRM input.
n the LT, ho we ver, the dynamic range of the data was found to
e unexpectedly reduced in the presence of strong RFI bursts, due
o a technical limitation of the low-noise amplifiers; this motivated
sing the spectral autocorrelation of the data as an input to IQRM
nstead. With that in mind, the IQRM C ++ implementation provides

ultiple spectral statistics to choose from. The code is modular and
sers may add new ones if need be. 
Much like all existing techniques, IQRM is not universally effec-

ive against all forms of RFI and is primarily used as a bright narrow-
and interference masking algorithm. Its main limitation is that the
stimator it uses to infer the acceptable range for its input spectral
tatistic [equation (5)] implicitly assumes that at least 50 per cent of
he channels are clean at any point in time; the method becomes less
NRAS 510, 1393–1403 (2022) 
f fecti ve otherwise and masks less data than expected, a situation
hat was found to occasionally occur on LT data. A possible solution
ould be to add a short-term memory to the algorithm, i.e. take into

ccount the spectral statistics of past data blocks when determining
he acceptable range for said statistic in the most recent block; this
ould help in making the correct decision when all channels become
emporarily contaminated (see Fig. 5 ). Another potential application
f IQRM would be to use the outlier detection algorithm on the data
ntegrated in time, i.e. the zero-DM time series. This could make it
seful against broad-band, non-dispersed RFI pulses, much like the
ow widely used zero-DM filter devised by Eatough et al. ( 2009 ),
ut without systematically reducing the S/N of genuine, low DM
strophysical events. The two aforementioned extensions will be
onsidered for a later update of the IQRM APOLLO implementation. 
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