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1. Introduction

In this paper we give explicit formulas for the number of points on reductions of CM elliptic curves
(see Theorems 1.1 and 5.3 and Corollary 5.4). We also give models for CM Q-curves, in certain cases
(see Theorem 7.4).

If Ẽ is an elliptic curve over a finite field Fq , it is well known that to count the number of points
in Ẽ(Fq), it suffices to determine the Frobenius endomorphism of Ẽ over Fq , or more precisely the
trace of Frobenius acting on an appropriate vector space. The best methods known for accomplish-
ing this with a general elliptic curve are modifications of the method of Schoof [17,18] or p-adic
methods [15].

When Ẽ is the reduction of an elliptic curve E over a number field F with complex multiplication
(CM) by an order in an imaginary quadratic field K ⊆ F , a different approach is possible. In this
case, as shown by Deuring [4], there is a Hecke character ψ of F with values in K × such that for
every prime P of F where E has good reduction, ψ(P) ∈ K = End(E) ⊗ Q reduces to the Frobenius
endomorphism of E modulo P. Thus if one can compute the Hecke character ψ , one can determine
the number of points on every reduction of E , including the original curve Ẽ . If Ẽ is an ordinary
elliptic curve over Fq , then Ẽ is always the reduction modulo P of some CM elliptic curve E defined
over some number field F . The field K determines the Frobenius endomorphism of Ẽ over Fq up to
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a root of unity in K (generally ±1). The computation of the Hecke character of E can be viewed as
the determination of this root of unity, for every prime P of F .

This CM approach has been carried out in special cases by several authors. The Hecke character
of E was computed by Gross [7,8] when End(E) is the maximal order in Q(

√−p ) with p prime and
p ≡ 3 (mod 4), and by Stark [26] when End(E) is the maximal order in Q(

√−d ) with squarefree
d ≡ 3 (mod 4) and 3 � d (i.e., d ≡ 7 or 11 (mod 12)). Individual special cases were done earlier by
a number of people, dating back to Gauss; see p. 349 of [12] for some of the relevant references. For
further discussion of the history of this problem, see §5 of [26].

In this paper we complete this program by computing, for every imaginary quadratic field K , ev-
ery imaginary quadratic order O, and every number field F ⊇ K , the Hecke character of every elliptic
curve over F with End(E) ∼= O, thereby computing the number of points on the reductions of these
elliptic curves. This extends the results of Stark and Gross to all d, including d ≡ 1,2 (mod 4) and
d ≡ 3 (mod 12), and to all orders, including non-maximal orders. Also, whenever d ≡ 2 or 3 (mod 4),
we produce a model of a Q-curve with CM by the maximal order in Q(

√−d ). (There are no
Q-curves with CM by the maximal order in Q(

√−d ) when d > 1 is a product of primes congru-
ent to 1 (mod 4).)

One motivation for studying this question comes from cryptography. For various cryptographic ap-
plications, such as finding “pairing-friendly” elliptic curves, one needs to find an elliptic curve over Fp
with a given number of points. The usual way to do this (the “CM method” [1]) produces a CM elliptic
curve over a number field whose reduction Ẽ/Fp has the property that either Ẽ or its quadratic twist
has the correct number of points. In [13] we use the results in this paper to give a simple efficient
algorithm for determining which of the two elliptic curves is correct. This settles an open question of
Atkin and Morain (Conjecture 8.1 of [1]).

We now state our main result in the (useful) special case where j(E) = j(O K ), with O K the
maximal order (it follows that E has CM by O K ).

Theorem 1.1. Suppose E: y2 = x3 + ax + b is an elliptic curve over a number field F , and j(E) = j(O K )

where O K is the ring of integers of an imaginary quadratic field K = Q(
√−d ) ⊆ F , with squarefree d 
= 1,3.

Suppose P � 2 is a prime of F where E has good reduction. Let λ ∈ O K be a generator of the principal ideal
NF/K (P) and let q = NF/Q(P). Then

#E(O F /P) = q + 1 − W · ε · TrK/Q(λ)

where

W =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
6bγ3(zd)

P
)2 if d ≡ 3 (mod 4),

(
−6biγ3(zd)

P
)2 if d ≡ 2 (mod 4),

(
(6b)2( j(E)−1728)

P
)4 if d ≡ 1 (mod 4),

the nth power residue symbols ( c
P

)n ∈ μn and the Weber function γ3 are defined in Section 2 below, zd is
defined by

d (mod 8) 2 3 6 7

zd
√−d 3+√−d

2 3 + √−d −3+√−d
2

and ε is defined by:

d ≡ 3 (mod 4):

λ3 (mod 4) 1,−√−d −1,
√−d

ε 1 −1
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d ≡ 2 (mod 4):

λ (mod 4) 1,−1 + 2
√−d,±1 + √−d −1,1 + 2

√−d,±1 − √−d

ε 1 −1

d ≡ 1 (mod 4):

λ (mod 4) 1,1 + 2
√−d 2 + √−d,

√−d −1,−1 + 2
√−d 2 − √−d,−√−d

ε 1 i −1 −i

Our method of proof is similar to the method of Stark [26], which follows an approach used by
Rumely in his thesis and [14]. Rumely showed how to use Shimura’s Reciprocity Law (for values of
modular functions at CM points) to compute the Hecke character of a CM elliptic curve in certain
special parametrized families.1 Rumely (Example 1 on p. 394 of [14]) and Stark (Eq. (3) on p. 1121
of [26]) used Weber functions to write down a family Ez of elliptic curves, parametrized by z in the
complex upper half-plane H (take α = 1 in Definition 2.4 below). When d ≡ 3 (mod 4) and 3 � d,
then z ∈ H can be chosen so that Ez has CM by the maximal order O K of K = Q(

√−d ) and Ez is
defined over the Hilbert class field H K of K , and in this case Stark computes the Hecke character
of Ez over H K . If E is an arbitrary elliptic curve with CM by O K over a number field F ⊇ K , then
H K ⊆ F and E is isomorphic to a quadratic twist of some such Ez over F , so one obtains the Hecke
character of E over F .

If either d is a multiple of 3 or d 
≡ 3 (mod 4), then there are z ∈ H such that Ez has CM by O K .
For all such z, the curve Ez is defined over a small but nontrivial extension of H K . For arbitrary
orders O there are z ∈ H such that Ez has CM by O and Ez is defined over a small extension H ′

O
of the ring class field H O of O. If E is an elliptic curve with CM by O defined over a number field
F ⊇ K , then E is isomorphic to some Ez over Q̄, and F contains H O but F need not contain H ′

O . In
order to compute the Hecke character of E over F , we need to determine what Gal(Q̄/H O) does to
the torsion points of Ez , not just the action of its proper subgroup Gal(Q̄/H ′

O) on the torsion points.
We do this in Proposition 3.3, extending the Rumely–Stark method. This allows us to compute the
Hecke characters for all elliptic curves with CM by O defined over F , for every d and O and every
number field F ⊇ K . Our main results are Theorem 5.3 and Corollary 5.4, and the heart of the proof
is in Theorem 4.4.

In [7], Gross defined a Q-curve to be an elliptic curve that is isogenous to all of its Galois con-
jugates, and studied these curves in detail when they have CM. In [8], Gross exhibited equations for
Q-curves with CM by the maximal order of Q(

√−p ) when p is a prime congruent to 3 (mod 4),
and determined their Hecke characters. We use our Hecke character computations (Theorem 5.3) to
exhibit equations for Q-curves with CM by the maximal order of Q(

√−d ) for all d ≡ 2 or 3 (mod 4),
and we use quadratic reciprocity over K to give another expression (Theorem 7.4) for the Hecke char-
acters of these curves. When d ≡ 3 (mod 4), the formula for the Hecke character in Theorem 7.4 is the
one given by Gross (Theorem 12.2.1 of [7] and Proposition 3.5 of [8]) when d is prime and by Stark
(Theorem 1 of [26]) when 3 � d, while the formula in Theorems 1.1 and 5.3 is of a different form.

In Example 4.3 we give a counterexample to the common myth that ψ(P) is necessarily in O,
where ψ is the Hecke character associated to an elliptic curve with CM by an order O.

The reader who wishes to avoid technical details might prefer to start by reading the statements
of Theorems 1.1, 5.3, and 7.4 and Corollary 5.4, and referring back to the notation and supporting
lemmas and propositions as necessary.

Outline of the paper. In Section 2 we introduce notation, state Shimura’s Reciprocity Law, and describe
the setting in which we work. In Section 3 we state or work out the properties of the Weber functions

1 Shimura points out in Remark 14.12(3) of [24] that there is a gap in Rumely’s proof of Theorem 1 of [14], although the
statement of that theorem is correct in the setting of Example 1 of [14]. While our method was inspired by Rumely’s approach,
we do not use his results.
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and Dedekind’s η-function that we need to compute Hecke characters. In Section 4 (Theorem 4.4)
we use these properties to compute the Hecke characters of the twists of Ez mentioned above. In
Section 5 we use Theorem 4.4 to prove Theorem 5.3 and Corollary 5.4, our main results on Hecke
characters and point counting, and in Section 6 we compute and exhibit the tables of values of an
important function that appears in our formulas in Theorem 5.3 and Corollary 5.4. In Section 7 we
obtain models for Q-curves and formulas for their Hecke characters (Theorem 7.4). In Section 8 we
give a point-counting result with a different flavor, under hypotheses that lead to a particularly simple
statement.

2. General notation

In this section we give definitions and notation that will be used in later sections, and state Shimu-
ra’s Reciprocity Theorem.

Let H denote the complex upper half-plane. Let i denote the square root of −1 in H. For z ∈ H, let

Lz := Z + Zz,

g2(z) := 60
∑

0
=ω∈Lz

ω−4 and g3(z) := 140
∑

0
=ω∈Lz

ω−6,

and let ℘(u; z) denote the Weierstrass ℘-function of u ∈ C for the lattice Lz .
Note that gk(z) is a modular form of weight 2k and level 1, with Fourier coefficients in (2π i)2kQ

(see for example §2.2 of [23]). Let η denote the Dedekind eta function

η(z) := e2π iz/24
∞∏

n=1

(
1 − e2π inz),

and define the Weber functions

γ2(z) := 12
g2(z)

(2π i)4η(z)8
and γ3(z) := −63 g3(z)

(2π i)6η(z)12
.

Then η8 (respectively, η12) is a modular form of weight 4 and level 3 (respectively, weight 6 and
level 2) with Fourier coefficients in Q, and γ2(z) and γ3(z) are modular functions of levels 3 and 2,
respectively, with Fourier coefficients in Q. Let j(z) denote the usual j-function. Weber (see for ex-
ample p. 326 of [16]) showed

γ2(z)3 = j(z) and γ3(z)2 = j(z) − 1728. (2.1)

If F is a subfield of Q̄ or is a local field, let O F denote its ring of integers.
If F ⊂ C is a number field, let A×

F denote its idele group, and let F ab denote the maximal abelian
extension of F in C. If s ∈ A×

F let [s, F ] ∈ Gal(F ab/F ) denote its global Artin symbol. If w is a place
of F then F w will denote the completion of F at w , and if s ∈ A×

F then sw ∈ F ×
w will denote the

w-component of s.
By a prime of a number field F we mean a prime ideal of O F . If P is a prime of F , let F ab,P

denote the maximal extension of F in F ab that is unramified at P, and if a ∈ F × , let ordP(a) be the
power of P in the prime factorization of the fractional ideal aO F . The Frobenius automorphism FrP
associated to P is the unique σ ∈ Gal(F ab,P/F ) such that σ(x) ≡ xNF/Q(P) (mod PO F ab,P) for all
x ∈ O F ab,P .

Let R+ denote the multiplicative group of positive real numbers, let GL+
2 (R) (respectively, GL+

2 (Q))
denote the subgroup of GL2(R) (respectively, GL2(Q)) of elements with positive determinant, and let
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GL+
2 (AQ) denote the subgroup of GL2(AQ) consisting of elements whose ∞-component has positive

determinant. Let

U = GL+
2 (R) ×

∏
�

GL2(Z�) ⊂ GL+
2 (AQ).

Recall that g = ( α β

γ δ

) ∈ GL+
2 (Q) acts on H by g(z) = αz+β

γ z+δ
.

Definition 2.1. Shimura (see [22] or §A5 of [24]; see also §6.6 of [23] or §1 of [14]) defined an action
of GL+

2 (AQ) on the space of modular forms f of weight k with Fourier coefficients in Qab, for every
k ∈ Z, characterized by:

(i) the subgroup of GL+
2 (AQ) fixing f is open,

(ii) f g(z) = (γ z + δ)−k f (g(z)) for every g = ( α β

γ δ

) ∈ GL+
2 (Q), and

(iii) if s ∈ R+ × ∏
� Z×

� and ι(s) := ( 1 0
0 s−1

)
, then f ι(s) = f [s,Q] , where [s,Q] acts on f by acting on the

Fourier coefficients.

If K is an imaginary quadratic field and τ ∈ K ∩ H, let qτ : K → M2(Q) be the map defined by

qτ (μ)

(
τ
1

)
=

(
μτ
μ

)
.

Then qτ (K ×) ⊆ GL2(Q). Extend qτ to a map qτ : AK → M2(AQ). Note that for all μ ∈ A×
K ,

det
(
qτ (μ)

) = NK/Q(μ) (2.2)

so in particular det(qτ (μ)∞) = μ∞μ̄∞ > 0, and therefore qτ (A×
K ) ⊆ GL+

2 (AQ).
The following theorem is Theorem 6.31(i) of [23].

Theorem 2.2 (Shimura Reciprocity). Suppose f is a modular function with Fourier coefficients in Qab , K is an
imaginary quadratic field, τ ∈ K ∩ H, and f is defined and finite at τ . Then f (τ ) ∈ K ab , and if s ∈ A×

K then

f (τ )[s,K ] = f qτ (s)−1
(τ ).

Let μn := {z ∈ C: zn = 1}.

Definition 2.3. Suppose F ⊂ C is a number field, μn ⊂ F , P is a prime of F not dividing n, and a ∈ F ×
is such that n | ordP(a). Then F (a1/n) ⊂ F ab,P and we define the nth power symbol

(
a

P

)
n,F

:= (
a1/n)(FrP−1) ∈ μn.

Note that if m | n then ( a
P

)m,F = ( an/m

P
)n,F . If further a ∈ O F −P, then ( a

P
)n,F ∈ μn is characterized

by the congruence
(

a

P

)
n,F

≡ a(NF/Q(P)−1)/n (mod P).

When n = 2 this is the quadratic residue symbol, and it is 1 if a is a square in (O F /P)× and −1 if
a is a nonsquare in (O F /P)× .

If E: y2 = x3 + ax + b is an elliptic curve, its discriminant �(E) is −16(4a3 + 27b2). By End(E)

we mean endomorphisms defined over an algebraic closure of the ground field. When E is an elliptic
curve over C, let E[N] = {P ∈ E(C): N P = O }.
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Definition 2.4. When α ∈ C× and z ∈ H, define an elliptic curve over C:

E(α)
z : y2 = x3 − α2 γ2(z)

48
x + α3 γ3(z)

864
.

Then:

j
(

E(α)
z

) = j(z), �
(

E(α)
z

) = α6, and EndC

(
E(α)

z
) = {λ ∈ C: λLz ⊆ Lz}. (2.3)

When α = 1 we will often write simply Ez instead of E(1)
z .

If K is an imaginary quadratic field, O is an order in K , and � is a rational prime, let O� :=
O ⊗Z Z� . If s ∈ A×

K , let s� denote the projection of s in (K ⊗Q Q�)
× ⊂ A×

K .

Definition 2.5. Suppose K is an imaginary quadratic field, O is an order in K , F is a finite extension
of K , and P is a prime of F . Let

VP = {
x ∈ F ×

P
: ordP(x) = 1

} ⊂ F ×
P

⊂ A×
F .

We define an (O, F )-good generator of NF/K (P) to be an element λ ∈ K × such that

λ−1NF/K (VP) ⊂ K ×∞
∏
�

O×
� . (2.4)

Lemma 2.6. Let K , O, F , and P be as in Definition 2.5. If λ is an (O, F )-good generator of NF/K (P), then:

(i) λ ∈ O K and λO K = NF/K (P),
(ii) if u ∈ O×

K , then uλ is (O, F )-good if and only if u ∈ O× ,
(iii) if P � 2, then λ ∈ O×

2 .

Proof. Let p be the prime of K below P. Suppose q is a prime of K and t ∈ VP . By (2.4), ordq(λ) =
0 = ordq(NF/K (P)) if q 
= p, and ordp(λ) = ordp(NF/K (t)) = ordp(NF/K (P)), so λO K = NF/K (P), giv-
ing (i). If u ∈ O× , then clearly uλ is (O, F )-good. Conversely, if λ and λ′ are both (O, F )-good
generators of NF/K (P), then their ratio is in O×

� for every �, so it is in O× . This gives (ii). As-
sume P � 2. Then NF/K (VP) ∈ O×

2 . Thus by (2.4), λ ∈ O×
2 , giving (iii). �

Remark 2.7. In general, an (O, F )-good generator of NF/K (P) may not exist. We will show in Corol-
lary 4.2 below that if there is an elliptic curve E defined over F with CM by O and with good
reduction at P, then NF/K (P) has an (O, F )-good generator, and if further P does not divide the
conductor of the order O, then NF/K (P) has an (O, F )-good generator in O, and a generator of
NF/K (P) is (O, F )-good if and only if it is in O. By Lemma 2.6(ii), if K is not Q(i) or Q(

√−3 ) and
there is an (O, F )-good generator of NF/K (P), then every generator of the ideal NF/K (P) is (O, F )-
good.

3. Some background results

In this section we state or work out the properties of the Weber functions and Dedekind’s
η-function that we need to compute Hecke characters.

Fix an imaginary quadratic field K and fix τ ∈ H ∩ K . Let Oτ be the order associated to the lattice
Lτ = Z + Zτ , i.e.,

Oτ = {α ∈ K : αLτ ⊆ Lτ }.

The ring class field Hτ of Oτ is the abelian extension of K corresponding under class field theory
to the subgroup K ×K ×∞

∏
� O×

τ ,� of A×
K . Then Hτ = K ( j(τ )) (see p. 23 of [5] or Theorem 5.7 of [23]).
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If λ ∈ O×
τ ,� ⊂ A×

K then qτ (λ) ∈ GL2(Z�) ⊂ GL+
2 (AQ), and if s ∈ K ×∞

∏
� O×

τ ,� then qτ (s) ∈ U. Note that

s ∈ K ×∞
∏

� O×
τ ,� if and only if s� ∈ O×

τ ,� for every �.

Definition 3.1. Let φ : SL2(Z/4Z) → μ4 be the unique homomorphism that sends
( 1 1

0 1

)
to i. We will

also view φ as a homomorphism SL2(Z2) → μ4 by composing with reduction modulo 4. We define

a function δτ : O×
τ ,2 → μ4 as follows. If λ ∈ O×

τ ,2 then
( 1 0

0 NK/Q(λ)−1

)
qτ (λ) ∈ SL2(Z2) by (2.2), and we

let

δτ (λ) = φ

((
1 0
0 NK/Q(λ)−1

)
qτ (λ)

)
∈ μ4.

Then δτ (λ) depends only on the reduction of λ modulo 4Oτ ,2, so we will also view δτ as a function
from (Oτ ,2/4Oτ ,2)

× to μ4. Note that (Oτ ,2/4Oτ ,2)
× = (Oτ /4Oτ )× .

Lemma 3.2. Suppose s ∈ A×
K is such that s� ∈ O×

τ ,� for every rational prime �. Then

(
ηqτ (s))6 = δτ (s2)η

6.

Proof. Let ρ = η6, and for every g = ( α β

γ δ

) ∈ SL2(Z) define ρ|g by

(ρ|g)(z) = (γ z + δ)−3ρ
(

g(z)
)
.

Then ρ is a modular form of weight 3 and level 4 with Fourier coefficients in Q, and ρ|g = φ(g)ρ
for every g ∈ SL2(Z) (see for example §1 of [9]).

Let

U4 =
{

v ∈ U: v2 −
(

1 0
0 1

)
∈ 4M2(Z2)

}
, and w =

(
1 0
0 NK/Q(s)−1

)
.

By (2.2), w · qτ (s) ∈ U ∩ SL2(AQ), so by Lemma 1.38 of [23] we can write

w · qτ (s) = v · h (3.1)

with v ∈ U4 and h ∈ SL2(Z). Since the Fourier coefficients of ρ lie in Q, Definition 2.1(iii) shows that
ρw = ρ . Since ρ has level 4, Proposition 1.4 of [22] shows that ρv = ρ . Thus (using Definition 2.1(ii))

ρqτ (s) = ρw·qτ (s) = ρv·h = ρh = ρ|h = φ(h)ρ. (3.2)

Since φ(h) = φ(w2qτ (s2)) = δτ (s2), this proves the lemma. �
The next result is an application of Shimura’s Reciprocity Law. Its proof is similar to Rumely’s proof

of part of Theorem 1 of [14].

Proposition 3.3. Suppose N ∈ Z+ , F is a finite extension of K , P is a prime of F not dividing 2N, and
u ∈ N−1 Oτ /Oτ . Then:

(i) ℘′(u;τ )/((2π i)3η(τ )6) ∈ F ab,P .
(ii) If λ is an (Oτ , F )-good generator of NF/K (P), then

(
℘′(u;τ )

(2π i)3η(τ )6

)FrP

= δτ (λ)−1 ℘′(λu;τ )

(2π i)3η(τ )6
.
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Proof. For T ∈ U, let T N denote the image of T in GL2(Z/NZ). If (a,b) ∈ (N−1Z/Z)2 (viewed as a row
vector), define

f(a,b)(z) = ℘′(az + b; z)

(2π i)3
.

Then (see §6.1 and §6.2 of [23], or p. 392 of [14]),

(a) f(a,b) is a modular form of weight 3 with Fourier coefficients in Qab,
(b) if T ∈ U then ( f(a,b))

T = f(a,b)T N .

Let p be the prime of K below P, let p be the prime of Q below P, and write u = aτ + b with
a,b ∈ N−1Z/Z. Then f(a,b)/η

6 is a modular function with Fourier coefficients in Qab, and

℘′(u;τ )

(2π i)3η(τ )6
= f(a,b)(τ )

η(τ )6
.

Suppose t ∈ F ×
P

and ordP(t) = 1. View t ∈ A×
F , and let s = λ−1NF/K (t) ∈ A×

K . Since λ is an (Oτ , F )-

good generator of NF/K (P), we have s ∈ K ×∞
∏

� O×
τ ,� , so qτ (s) ∈ U.

By Theorem 2.2, ℘′(u;τ )/((2π i)3η(τ )6) ∈ K ab and

(
℘′(u;τ )

(2π i)3η(τ )6

)[s,K ]
=

(
f(a,b)(τ )

η(τ )6

)[s,K ]
= ( f(a,b))

qτ (s)−1
(τ )

(ηqτ (s)−1
(τ ))6

. (3.3)

Let (a′,b′) := (a,b)qτ (s)−1
N ∈ (N−1Z/Z)2. Since P � N , we have s� = λ−1 for all � | N , and so qτ (s)−1

N =
qτ (λ)N . Thus in C/Oτ ,

a′τ + b′ = (a′,b′)
(

τ
1

)
= (a,b)qτ (s)−1

N

(
τ
1

)
= (a,b)qτ (λ)

(
τ
1

)
= (a,b)

(
λτ
λ

)
= λu.

Using this and (b) above,

( f(a,b))
qτ (s)−1

(τ ) = f
(a,b)qτ (s)−1

N
(τ ) = f(a′,b′)(τ ) = ℘′(λu;τ )

(2π i)3
. (3.4)

Since P � 2, we have s2 = λ−1, so by Lemma 3.2,

(
ηqτ (s)−1

(τ )
)6 = δτ (λ)η(τ )6.

Combining this with (3.3) and (3.4) immediately gives

(
℘′(u;τ )

(2π i)3η(τ )6

)[s,K ]
= δτ (λ)−1 ℘′(λu;τ )

(2π i)3η(τ )6
. (3.5)

Since the right-hand side is independent of t (recall that s was defined in terms of t ∈ F ×
P

), for every

r ∈ O×
F ,P

we have

℘′(u;τ )

(2π i)3η(τ )6
=

(
℘′(u;τ )

(2π i)3η(τ )6

)[NF/K (r),K ]
=

(
℘′(u;τ )

(2π i)3η(τ )6

)[r,F ]
.
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Since {[r, F ]: r ∈ O×
F ,P

} is the inertia group at P in Gal(F ab/F ), it follows that

℘′(u;τ )

(2π i)3η(τ )6
∈ F ab,P,

giving (i). Let L = K ab ∩ F ab,P . By class field theory,

[s, K ]|L = [
NF/K (t), K

]∣∣
L = [t, F ]|L = FrP|L .

This and (3.5) give (ii). �
Lemma 3.4. Let D ∈ Z<0 denote the discriminant of the order Oτ . Then:

(i) γ2(τ )3, γ3(τ )2 ∈ Q( j(τ )) ⊂ Hτ ;
(ii) if D is odd then

√
Dγ3(τ ) ∈ Q( j(τ )) ⊂ Hτ and γ3(τ ) ∈ Hτ ;

(iii) if D ≡ 4 or 8 (mod 16) then
√−Dγ3(τ ) ∈ Q( j(τ )) ⊂ Hτ and iγ3(τ ) ∈ Hτ ;

(iv) if D ≡ 0 or 12 (mod 16) then i ∈ Hτ .

Proof. Part (i) follows from (2.1). Let ω = (3 + √
D )/2 if D is odd, and ω = √

D/2 if D is even.
Then Lω = Oτ , so γ3(ω)2 = j(ω) − 1728 and γ3(τ )2 = j(τ ) − 1728 are Gal(Hτ /K )-conjugates by
Theorem 5.7 of [23]. Therefore it suffices to prove (ii)–(iv) when τ is replaced by ω. In this case all
three statements (except D = −8, which is easy to check) are proved by Birch in §6 of [2] (who in
turn says that they were either proved or noticed by Weber in §§125, 126, 134 of [27]). �
4. Computing the Hecke character

As before, fix an imaginary quadratic field K and fix τ ∈ H ∩ K . Theorem 4.4 below is the key to
our main results in Section 5. For example, when F = Hτ it allows us to compute the Hecke character
of E(α)

τ over Hτ whenever E(α)
τ is defined over Hτ , even if α /∈ Hτ (i.e., even if Eτ is not defined

over Hτ ). We first state the basic properties we will need of the Hecke character.

Proposition 4.1. Suppose E is an elliptic curve over a number field F ⊇ K , and O := End(E) is an order in K .
Let B be the set of primes of F where E has bad reduction, and let I(B) be the group of fractional ideals of F
supported outside of B. Then there is a unique character ψ = ψE/F : I(B) → K × , called the Hecke character
of E over F , such that for every prime P of F where E has good reduction:

(i) ψ(P) ∈ O K , and ψ(P) is an (O, F )-good generator of NF/K (P);
(ii) if O = Z + cpr O K , where p is the residue characteristic of P and p � c, then ψ(P) ∈ Z + cO K ;

(iii) if P does not divide the conductor of O then ψ(P) ∈ O;
(iv) |E(O F /P)| = NF/Q(P) + 1 − TrK/Q(ψ(P)).

Proof. Let ψA : A×
F → C× denote the Hecke character of E over F on ideles, as defined in §7.8

of [23]. By Theorem 7.42 of [23], ψA is unramified at P. Then ψ(P) = ψA(t) where t ∈ F ×
P

⊂ A×
F

is any element satisfying ordP(t) = 1. It follows from Proposition 7.40(ii) of [23] that ψ(P)/NF/K (t) ∈
K ×∞

∏
� O×

� , so ψ(P) is an (O, F )-good generator of NF/K (P) (in the sense of Definition 2.5). By
Lemma 2.6(i), we have ψ(P) ∈ O K , giving (i).

For (ii), we follow a standard method as in, for example, the proof of Theorem 12 in Chapter 13
of [10]. Let Ẽ denote the reduction of E modulo P, and let p be the rational prime below P. It is
shown in the proof of Theorem 7.42 of [23] that the image of ψ(P) under

K = O ⊗ Q = End(E) ⊗ Q ↪→ End(Ẽ) ⊗ Q

is the Frobenius endomorphism ϕ ∈ End(Ẽ) ⊂ End(Ẽ) ⊗ Q. Thus for every rational prime � 
= p, if T�

denotes the �-adic Tate module we have a commutative diagram
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T�(E) ⊗ Q
ψ(P)

∼=

T�(E) ⊗ Q

∼=

T�(Ẽ) ⊗ Q
ϕ

T�(Ẽ) ⊗ Q

where the vertical maps are induced by the reduction isomorphism T�(E)
∼−→ T�(Ẽ). Since ϕ ∈ End(Ẽ),

we have ϕ(T�(Ẽ)) ⊆ T�(Ẽ). Thus by Theorem 5 of [20], ψ(P) ∈ O� for all � 
= p. Thus

ψ(P) ∈ O K ∩
� 
=p

O� = Z + cO K .

This gives (ii). If P does not divide the conductor cpr of O (i.e., r = 0), then

Z + cO K = Z + cpr O K = O,

giving (iii).
For (iv), see for example Corollary II.10.4.1 of [25] for the case where O is the maximal order O K ,

and see Theorem 7.42 of [23] for the general case. �
Corollary 4.2. Suppose that F is a number field containing K , P is a prime of F , and O is an order in K . If
there is an elliptic curve E defined over F with CM by O and with good reduction at P, then:

(i) NF/K (P) has an (O, F )-good generator;
(ii) if P does not divide the conductor of the order O, then:

(a) NF/K (P) has a generator in O,
(b) a generator of NF/K (P) is (O, F )-good if and only if it lies in O.

Proof. By Proposition 4.1(i), ψ(P) is an (O, F )-good generator of NF/K (P), where ψ is the Hecke
character of E . If P does not divide the conductor of O, then ψ(P) ∈ O by Proposition 4.1(iii). Part (b)
now follows from Lemma 2.6(ii). �

Next we give an example in which NF/K (P) has no generators in O, under the hypotheses in
Corollary 4.2 (and Theorem 5.3), so ψ(P) /∈ O. This is why we take an (O, F )-good generator of
NF/K (P), which always exists by Corollary 4.2(i), rather than a generator in O.

Example 4.3. Let K = Q(
√−11 ). Then O K = Z[β] where β = (1 + √−11 )/2 ∈ O K . Let O = Z + 3O K ,

the order of conductor 3 in O K . Then 3 = ββ̄ ,

j(O) = j(3β) = −18 808 030 478 336 − 3 274 057 859 072
√

33,

and H O = K ( j(O)) = K (
√

33 ) = K (
√−3 ). Let E be the elliptic curve

y2 + y = x3 − (7 + √
33 )

2
x2 − (2487 + 433

√
33 )

2
x − 21 416 − 3728

√
33.

Then E is defined over F := H O . Since j(E) = j(O), E has CM by O. The discriminant of E is the unit
−23 − 4

√
33, so E has good reduction everywhere. Let P be a prime of F above β . Since P is totally

ramified in the extension F/K , we have NF/K (P) = βO K , which has no generators in O. Therefore,
ψ(P) /∈ O. Note that the reduction of E mod P has CM by O K .

Recall δτ from Definition 3.1.
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Theorem 4.4. Suppose K is an imaginary quadratic field, τ ∈ H ∩ K , and O×
τ = {±1}. Suppose F is a number

field containing K , and α ∈ C× is such that α2γ2(τ ),α3γ3(τ ) ∈ F . Let ψ be the Hecke character of E(α)
τ

over F . If P is a prime ideal of F where E(α)
τ has good reduction, P � 2, and λ is an (Oτ , F )-good generator of

NF/K (P), then:

(i) α6 ∈ F ,
(ii) 4 | ordP(α6),

(iii) ψ(P) = ±λ, and
(iv) ψ(P) = δτ (λ)(α9/2)(FrP−1)λ = δτ (λ)−1(α3/2)(FrP−1)λ.

Proof. Let j = j(τ ), γ2 = γ2(τ ), and γ3 = γ3(τ ). Note that Hτ = K ( j) = K ( j(E(α)
τ )) ⊆ F . Since γ 3

2 and
γ 2

3 ∈ Hτ (by Lemma 3.4(i)), and γ 3
2 and γ 2

3 cannot both be zero (by (2.1)), we have (i).

By (2.3), EndC(E(α)
τ ) = Oτ . The map t : C/Lτ → E(α)

τ (C) defined by

t(u) = (
α℘(u;τ )/

(
(2π i)2η(τ )4),α3/2℘′(u;τ )/

(
(2π i)3η(τ )6))

is an Oτ -module isomorphism. Suppose N ∈ Z+ is prime to P and suppose u ∈ N−1 Oτ /Oτ =
(C/Oτ )[N]. Then t(u) ∈ E(α)

τ [N]. Since E(α)
τ has good reduction at P and P � N , the coordinates of t(u)

generate an extension of F that is unramified at P. By Proposition 3.3(i) it follows that F (α3/2)/F is
unramified at P, and since (α3/2)4 = α6 ∈ F this proves (ii).

By Proposition 7.40(2) of [23], t(u)FrP = t(ψ(P)u). Taking y-coordinates and applying Proposi-
tion 3.3(ii) gives

α3/2 ℘′(ψ(P)u;τ )

(2π i)3η(τ )6
=

(
α3/2 ℘′(u;τ )

(2π i)3η(τ )6

)FrP

= (
α3/2)FrP

δτ (λ)−1 ℘′(λu;τ )

(2π i)3η(τ )6

so

℘′(ψ(P)u;τ ) = ℘′(λu;τ )
(
α3/2)(FrP−1)

δτ (λ)−1. (4.1)

Since (4.1) holds for a dense set of u ∈ C, it holds for every u ∈ C by continuity. The left side of (4.1)
has poles exactly at all u ∈ ψ(P)−1Lτ while the right side has poles exactly at all u ∈ λ−1Lτ . Thus
ψ(P)/λ ∈ O×

τ = {±1}, giving (iii). Since ℘′ is an odd function,

℘′(ψ(P)u;τ ) = ℘′((ψ(P)/λ
)
λu;τ ) = (

ψ(P)/λ
)
℘′(λu;τ ) (4.2)

for all u ∈ C. Comparing this with (4.1) gives

ψ(P)/λ = δτ (λ)−1(α3/2)(FrP−1) ∈ {±1}. (4.3)

Since α6 ∈ F by (i), we have (α6)(FrP−1) = 1 and thus

δτ (λ)−1(α3/2)(FrP−1) = δτ (λ)
(
α−3/2)(FrP−1) = δτ (λ)

(
α9/2)(FrP−1)

.

Combining this with (4.3) proves (iv). �
5. Explicit formulas for Hecke characters and point counting

The main results of this paper are Theorem 5.3 and Corollary 5.4.
If K is an imaginary quadratic field and τ ∈ H ∩ K , let D(τ ) denote the discriminant of the or-

der Oτ (so D(τ ) = B2 − 4AC ≡ 0 or 1 (mod 4) where Aτ 2 + Bτ + C = 0 with A, B, C ∈ Z and
gcd(A, B, C) = 1).
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Definition 5.1. With τ as above and using δτ of Definition 3.1, define a map ετ : (Oτ /4Oτ )× → μ4 by

ετ (λ) =
{

i(NK/Q(λ)−1)/2δτ (λ) if D(τ ) ≡ 4 or 8 (mod 16),

δτ (λ) otherwise.

We will give ετ in a concrete and explicit way in Section 6.
Recall the quadratic and quartic symbols ( a

P
)2,F and ( a

P
)4,F of Definition 2.3.

Remark 5.2. In Theorem 5.3 below, if K is not Q(i) or Q(
√−3 ), then by Lemma 2.6(ii) and Propo-

sition 4.1(i), every generator of the principal ideal NF/K (P) is (O, F )-good. Thus in this case the
hypothesis “let λ be an (O, F )-good generator of NF/K (P)” can be replaced by “let λ be a generator
of NF/K (P)”. For arbitrary K , if P does not divide the conductor of the order O, then by Corol-
lary 4.2(ii), the hypothesis “let λ be an (O, F )-good generator of NF/K (P)” can be replaced by “let λ

be a generator of NF/K (P) in O”. The same simplifications apply to Corollary 5.4.

Theorem 5.3. Suppose E: y2 = x3 + ax + b is an elliptic curve over a number field F , and O := End(E) is an
order in an imaginary quadratic field K ⊆ F . Assume O× = {±1}. Take any τ ∈ H ∩ K such that j(E) = j(τ ).
Suppose P is a prime of F , not dividing 2, where E has good reduction. Let λ be an (O, F )-good generator of
NF/K (P), let q = NF/Q(P), let ψ denote the Hecke character of E over F , let D be the discriminant of O, and
let j = j(τ ), γ2 = γ2(τ ), and γ3 = γ3(τ ) (so O = Oτ ). Then:

(i) If D is odd, then γ3 ∈ F , ordP(6bγ3) is even,

ψ(P) =
(

6bγ3

P

)
2,F

ετ (λ)λ,

and |E(O F /P)| = q + 1 − (
6bγ3
P

)2,F ετ (λ)TrK/Q(λ).

(ii) If D ≡ 4 or 8 (mod 16), then iγ3 ∈ F , ordP(−6biγ3) is even,

ψ(P) =
(−6biγ3

P

)
2,F

ετ (λ)λ,

and |E(O F /P)| = q + 1 − (
−6biγ3

P
)2,F ετ (λ)TrK/Q(λ).

(iii) If D ≡ 0 or 12 (mod 16), then i ∈ F , 4 | ordP(62b2( j − 1728)),

ψ(P) =
(

62b2( j − 1728)

P

)
4,F

ετ (λ)λ,

and |E(O F /P)| = q + 1 − (
62b2( j−1728)

P
)4,F ετ (λ)TrK/Q(λ).

Proof. The choice of τ implies that O = Oτ . Let μ = 2734a2b/(4a3 + 27b2) ∈ F × . The map (x, y) �→
(μ2x,μ3 y) defines an isomorphism over F from E to the curve y2 = x3 + μ4ax + μ6b. The latter is

y2 = x3 − 3

4
b2 j3( j − 1728)x + 1

4
b3 j4( j − 1728)2,

which is E(α)
τ with α := 6bγ 4

2 γ3, since

γ 3
2 = j = j(E) = 2833a3/

(
4a3 + 27b2), γ 2

3 = j − 1728 = −2636b2/
(
4a3 + 27b2).
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Thus E is isomorphic over F to E(α)
τ , so they have the same Hecke character ψ over F . Since j ∈ F ,

we have Hτ ⊆ F .
Case 1. Suppose D is odd. Then α9 = 69b9γ3 j12( j − 1728)4 ∈ F × by Lemma 3.4(ii), and ordP(α9)

is even by Theorem 4.4(ii), so

(
α9/2)(FrP−1) =

(
α9

P

)
2,F

=
(

6bγ3

P

)
2,F

. (5.1)

Case 2. Suppose D ≡ 4 or 8 (mod 16). Then iα9 = 69b9iγ3 j12( j − 1728)4 ∈ F × by Lemma 3.4(iii),
and ordP(iα9) is even by Theorem 4.4(ii). If ζ ∈ μ8, then ζ (FrP−1) = ζ (q−1) . Thus,

(
α9/2)(FrP−1) = i(q−1)/2

(−iα9

P

)
2,F

= i(q−1)/2
(−6biγ3

P

)
2,F

. (5.2)

Case 3. Suppose D ≡ 0 or 12 (mod 16). Then

α18 = 618b18 j24( j − 1728)9 ∈ F ×,

i ∈ F by Lemma 3.4(iv), and 4 | ordP(α18) by Theorem 4.4(ii). It follows that

(
α9/2)(FrP−1) =

(
α18

P

)
4,F

=
(

62b2( j − 1728)

P

)
4,F

. (5.3)

The desired formulas for ψ(P) now follow from Theorem 4.4(iv) along with (5.1)–(5.3) and Defi-
nition 5.1. By Theorem 4.4(iii), ψ(P)/λ ∈ {±1}, so

TrK/Q

(
ψ(P)

) = (
ψ(P)/λ

)
TrK/Q(λ).

The desired formulas for |E(O F /P)| now follow from Proposition 4.1(iv). �
Corollary 5.4. Suppose K is an imaginary quadratic field, τ ∈ H ∩ K , and O×

τ = {±1}. Suppose F is a finite
extension of Hτ and β ∈ F × . With j := j(τ ), γ2 := γ2(τ ), and γ3 := γ3(τ ), let E be the elliptic curve given
by the following table, depending on D(τ ) (mod 16):

D(τ ) E

odd E
(βγ 4

2 )
τ : y2 = x3 − β2 j3

48 x + β3γ3 j4

864

4 or 8 (mod 16) E
(β iγ 4

2 )
τ : y2 = x3 + β2 j3

48 x − β3 iγ3 j4

864

0 or 12 (mod 16) E
(βγ 4

2 γ3)
τ : y2 = x3 − β2 j3( j−1728)

48 x + β3 j4( j−1728)2

864

Suppose P is a prime of F , not dividing 2, where E has good reduction. Suppose λ is an (Oτ , F )-good generator
of NF/K (P). Let q = NF/Q(P). Then:

(i) E is defined over F , End(E) = Oτ , and j(E) = j;
(ii) if D(τ ) is odd or D(τ ) ≡ 4 or 8 (mod 16), and ψ is the Hecke character of E over F , then ordP(β) is

even, ψ(P) = (
β
P

)2,F ετ (λ)λ, and

∣∣E(O F /P)
∣∣ = q + 1 −

(
β

P

)
2,F

ετ (λ)TrK/Q(λ);
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(iii) if D(τ ) ≡ 0 or 12 (mod 16), and ψ is the Hecke character of E over F , then 4 divides ordP(β2( j −1728)),

ψ(P) = (
β2( j−1728)

P
)4,F ετ (λ)λ, and

∣∣E(O F /P)
∣∣ = q + 1 −

(
β2( j − 1728)

P

)
4,F

ετ (λ)TrK/Q(λ).

Proof. By Lemma 3.4, E is defined over F . By (2.3), j(E) = j = j(τ ), so End(E) = Oτ . Now (ii) and (iii)
follow directly from Theorem 5.3, using the fact that 864 = 6 · 122. �
Remark 5.5. In Theorem 5.3 we exclude the cases where O×

τ is larger than {±1}. This excludes pre-
cisely those τ with j(τ ) = 1728 (i.e., Oτ = Z[i]; i.e., D(τ ) = −4) or j(τ ) = 0 (i.e., Oτ = Z[e2π i/3];
i.e., D(τ ) = −3). For completeness we include these cases in the next two results, which follow easily
from classical results that go back to Gauss (see for example p. 318 of [3]).

Theorem 5.6. Suppose F is a number field containing i. Suppose a ∈ F × , and E is the elliptic curve y2 =
x3 − ax. Let ψ denote the Hecke character of E over F . Suppose P is a prime of F , not dividing 2, where E has
good reduction. Let λ ∈ Z[i] be the generator of the principal ideal NF/Q(i)(P) congruent to 1 (mod 2 + 2i),
and let q = NF/Q(P). Then 4 | ordP(a),

ψ(P) =
(

a

P

)−1

4,F
λ, and

∣∣E(O F /P)
∣∣ = q + 1 − TrQ(i)/Q

((
a

P

)−1

4,F
λ

)
.

Theorem 5.7. Suppose F is a number field containing
√−3. Suppose b ∈ F × , and E is the elliptic curve y2 =

x3 + 16b. Let ψ denote the Hecke character of E over F . Suppose P is a prime of F , not dividing 6, where
E has good reduction. Let λ ∈ Z[e2π i/3] be the generator of the principal ideal NF/Q(

√−3 )(P) congruent to
1 (mod 3), and let q = NF/Q(P). Then 6 | ordP(b),

ψ(P) =
(

b

P

)−1

6,F
λ, and

∣∣E(O F /P)
∣∣ = q + 1 − TrQ(

√−3 )/Q

((
b

P

)−1

6,F
λ

)
.

6. Computing ετ

In order to make Theorem 5.3 and Corollary 5.4 explicit, it is necessary to compute the function ετ .
For any given τ , this is a simple computation, following a method described (for example) in §1 of [9]
(see the proofs of Lemma 6.1 and Proposition 6.2 below).

Suppose O is an arbitrary order in an imaginary quadratic field K and define τD as in (6.2) below.
Proposition 6.2 below gives the explicit values of the function ετD . Suppose E is an elliptic curve over
F ⊇ K . If j(E) = j(O) (= j(τD)), then Theorem 5.3 and Proposition 6.2 together give explicit formulas
for the number of points on the reductions of E . When O = O K , this gives Theorem 1.1. Under
the more general hypotheses in Theorem 5.3 (i.e., j(E) = j(a) for a proper O-ideal a), take any τ
satisfying the conclusion of Lemma 6.4(i) below. Then Lemma 6.4(ii) and Proposition 6.2 together
give an explicit value for the ετ (λ) that occurs in Theorem 5.3 and Corollary 5.4.

Throughout this section, suppose D is the discriminant of an order O in an imaginary quadratic
field K = Q(

√
D ) (i.e., D is a negative integer and D ≡ 0 or 1 (mod 4)). Define a positive integer d by

d =
{−D if D is odd,

−D/4 if D is even
(6.1)
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and let
√−d denote the square root of −d in H. Then K = Q(

√−d ), and we define τD ∈ H ∩ K by
the following table:

D: 1 (mod 8) 5 (mod 8) 4 or 8 (mod 32) otherwise

τD : −3+√−d
2

3+√−d
2 3 + √−d

√−d
(6.2)

Then O = OτD = LτD = Z + ZτD and j(O) = j(τD).
The function ετ was defined in terms of the map φ of Definition 3.1. A strategy for computing

values of φ is given in §1 of [9]. We state the relevant ideas in the next lemma, and use them below.

Lemma 6.1. Suppose M ∈ SL2(Z/4Z) and k ∈ Z. Let C denote the commutator subgroup of SL2(Z/4Z). Then:

(i) φ(M) = ik if and only if
( 1 −k

0 1

)
M ∈ C,

(ii) φ(
( −1 0

0 1

)
M

( −1 0
0 1

)−1
) = φ(M).

Proof. The explicit description of C (see p. 498 of [9]) shows that
( 1 1

0 1

)
generates SL2(Z/4Z)/C .

Thus, given M , there is a unique k ∈ Z/4Z so that Mk := ( 1 −k
0 1

)
M ∈ C . Then φ(Mk) = 1 (since μ4

is abelian), so φ(M) = ik . Now (i) follows. Part (ii) follows from (i) and the fact that
( 1 −k

0 1

)( −1 0
0 1

) =( −1 0
0 1

)( 1 k
0 1

)
. �

Proposition 6.2. The map ετD : O×
2 → μ4 is given by the following tables.

If D is odd:

λ3 (mod 4): 1,−√−d −1,
√−d

ετD (λ): 1 −1

If D ≡ 4 (mod 16):

λ (mod 4): 1,
√−d,−1 + 2

√−d,2 − √−d −1,−√−d,1 + 2
√−d,2 + √−d

ετD (λ): 1 −1

If D ≡ 8 (mod 16):

λ (mod 4): 1,−1 + 2
√−d,±1 + √−d −1,1 + 2

√−d,±1 − √−d

ετD (λ): 1 −1

If D ≡ 12 (mod 16):

λ (mod 4): 1,1 + 2
√−d 2 + √−d,

√−d −1,−1 + 2
√−d 2 − √−d,−√−d

ετD (λ): 1 i −1 −i

If D ≡ 0 (mod 16):

λ (mod 4): 1,−1 + 2
√−d ±1 − √−d −1,1 + 2

√−d ±1 + √−d

ετD (λ): 1 i −1 −i
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Proof. Since ετ is a simple modification of δτ (Definition 5.1), it suffices to compute δτD (λ). By Defi-
nition 3.1,

δτD (λ) = φ

((
1 0
0 NK/Q(λ)−1

)
qτD (λ)

)
. (6.3)

We follow the strategy for computing values of φ described in §1 of [9] (and Lemma 6.1 above).

Find k ∈ {0,1,2,3} such that
( 1 −k

0 1

)( 1 0
0 NK/Q(λ)−1

)
qτD (λ) is in the commutator subgroup of SL2(Z/4Z)

(given explicitly on p. 498 of [9]). Then δτD (λ) = ik by Lemma 6.1(i) and (6.3). We carried out this
computation in Mathematica, and obtained the values in the tables. �
Remark 6.3. The discriminants of maximal orders in imaginary quadratic fields are exactly the neg-
ative integers D such that either D is squarefree and D ≡ 1 (mod 4), or D = −4d with d ∈ Z+
squarefree and d ≡ 1 or 2 (mod 4). So if D is the discriminant of a maximal order then D is odd or
D ≡ 8 or 12 (mod 16).

For x, y ∈ Q, we write x ≡ y (mod 2m) to mean ord2(x − y) � m.

Lemma 6.4. Suppose O is an order of discriminant D in an imaginary quadratic field K , E is an elliptic curve
over C, and End(E) = O. Then:

(i) there is a τ ∈ H ∩ K such that j(τ ) = j(E) and τ = rτD + s with r, s ∈ Q, r ≡ 1 (mod 2), and s ≡
0 (mod 4);

(ii) with τ as in (i), then for every λ ∈ O×
τ ,2 we have

ετ (λ) =
⎧⎨
⎩

ετD (λ) if r ≡ 1 (mod 4),

ετD (λ)(−1)(NK/Q(λ)−1)/2 if r ≡ −1 (mod 4) and D ≡ 4,8 (mod 16),

ετD (λ) if r ≡ −1 (mod 4) and D 
≡ 4,8 (mod 16).

Proof. By the theory of complex multiplication there is an invertible ideal a ⊆ O such that
j(E) = j(a). Changing a in its ideal class if necessary, we may assume that [O : a] is odd. Let a be
the smallest positive integer in a. Then a has a Z-basis {a,bτD + c} with a,b, c ∈ Z and bτD + c ∈ H,
and a,b must both be odd. Subtracting ca2 from c if necessary, we may assume that 4 | c. If we
let τ = (b/a)τD + (c/a) ∈ H ∩ K then Lτ = a−1a, so j(τ ) = j(Lτ ) = j(a) = j(E). This gives (i). Since
j(τ ) = j(E), it follows that Oτ = O (= OτD ).

By definition of qτ , for every λ ∈ K × we have

qτ (λ) =
(

r s
0 1

)
qτD (λ)

(
r s
0 1

)−1

.

By Definition 3.1 and the fact that s ≡ 0 (mod 4), if λ ∈ O×
τ ,2 then

δτ (λ) = φ

((
1 0
0 NK/Q(λ)−1

)(
r 0
0 1

)
qτD (λ)

(
r 0
0 1

)−1)

= φ

((
r 0
0 1

)(
1 0
0 NK/Q(λ)−1

)
qτD (λ)

(
r 0
0 1

)−1)
.

Thus δτ (λ) = δτD (λ) if r ≡ 1 (mod 4), and applying Lemma 6.1(ii) with M = ( 1 0
0 NK/Q(λ)−1

)
qτD (λ) shows

that δτ (λ) = δτD (λ) if r ≡ −1 (mod 4). Part (ii) now follows from Definition 5.1 (and the fact that
ετD (λ) ∈ {±1} when D ≡ 4,8 (mod 16)). �
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7. QQQ-curves

Suppose now that D is a (negative) fundamental discriminant, and let d ∈ Z+ be given by (6.1)
and τD by (6.2). Then d is a squarefree positive integer. With K := Q(

√−d ), then OτD = O K is
the maximal order of K , and H := HτD is the Hilbert class field of K . Following Gross (§11 of [7]), an
elliptic curve E over H is defined to be a Q-curve if E is isogenous over H to Eσ for all σ ∈ Gal(H/Q).
By Lemma 11.1.1 of [7], E is a Q-curve if and only if for all but finitely many primes P of H and all
σ ∈ Gal(H/Q),

ψE
(
Pσ

) = ψE(P)σ (7.1)

where ψE is the Hecke character of E over H . In Theorem 7.4 below we use Theorem 5.3 to exhibit,
whenever d ≡ 2 or 3 (mod 4), explicit models and Hecke characters of Q-curves, defined over Q( j),
with CM by O K . When d is a prime congruent to 3 (mod 4), Theorem 7.4 was proved by Gross
(Theorem 12.2.1 of [7] and Proposition 3.5 of [8]), and when 3 � d ≡ 3 (mod 4) it was proved by Stark
(Theorem 1 of [26]) (see Remark 7.5 below).

Remark 7.1. When all prime divisors of d > 1 are congruent to 1 (mod 4), there are no Q-curves
with CM by O K . See Example 3 on p. 527 of [21] and §11.3 of [7].

We first need a lemma that we will use to prove Theorem 7.4.

Definition 7.2. If F is a number field, q is a prime of F , and a,b ∈ F × , let [a,b]q,F ∈ {±1} denote
the local Hilbert symbol at q, which is defined to be 1 if and only if b ∈ NFq(

√
a )/Fq

(Fq(
√

a )×). Let
[a,b]2,F = ∏

q|2[a,b]q,F .

Lemma 7.3.

(i) The function ετD : O×
K ,2 → μ4 is a homomorphism.

(ii) If d ≡ 3 (mod 4) and λ ∈ O K is prime to 2, then

ετD (λ) = [
√

−d, λ]2,K .

(iii) If d ≡ 6 (mod 8), λ ∈ O K is prime to 2, and q = NK/Q(λ), then

ετD (λ) = (−1)(q−1)(q+d+11)/16[
√

−d, λ]2,K .

(iv) If d ≡ 2 (mod 8), u, v ∈ Z, λ = u + v
√−d is prime to 2, and q = NK/Q(λ), then

ετD (λ) = (−1)(u−1)/2(−1)(q−1)(q+d+3)/16[
√

−d, λ]2,K .

Proof. Part (i) can be checked directly using Proposition 6.2. It is easy to check that both sides of
the displayed equations depend only on λ (mod 8O K ), so (ii)–(iv) can also be checked by direct
computations. �

Let j = j(τD), γ2 = γ2(τD), and γ3 = γ3(τD).

Theorem 7.4. Suppose d ≡ 2 or 3 (mod 4). Let E be the curve

E =
⎧⎨
⎩

E
(
√−dγ 4

2 )
τD : y2 = x3 + dj3

48 x − d
√−dγ3 j4

864 if d ≡ 3 (mod 4),

E
(−√

dγ 4
2 )

: y2 = x3 − dj3
x − d

√
dγ3 j4

if d ≡ 2 (mod 4).
τD 48 864



2920 K. Rubin, A. Silverberg / Journal of Number Theory 129 (2009) 2903–2923
Then:

(i) E is defined over Q( j).
(ii) j(E) = j and �(E) = (−1)dd3 j8 .

(iii) E is a Q-curve.
(iv) Suppose P is a prime of H, not dividing 2, where E has good reduction. Suppose λ = u + v

√−d ∈ O K

is a generator of NH/K (P), with u, v ∈ 1
2 Z, and let q = NH/Q(P) = u2 + dv2 . If d 
= 3 then the Hecke

character ψ of E over H is given by

ψ(P) =

⎧⎪⎪⎨
⎪⎪⎩

( 4u
d )λ if d ≡ 3 (mod 4),

(−1)(q−1)(q+d+11)/16( u
d/2 )λ if d ≡ 6 (mod 8),

(−1)(u−1)/2(−1)(q−1)(q+d+3)/16( u
d/2 )λ if d ≡ 2 (mod 8)

where (–) is the Jacobi symbol.

Proof. Note that E is the curve of Corollary 5.4 with β = √−d. By Lemma 3.4(ii), (iii) we have (i).
By (2.3) and (2.1) we have (ii).

Suppose ψ , P, λ, q and u are as in (iv). By Corollary 5.4(ii) (with β = √−d ),

ψ(P) =
(√−d

P

)
2,H

ετD (λ)λ. (7.2)

We will evaluate (
√−d
P

)2 using quadratic reciprocity over K .

Let p be the prime of K below P and let f = [O H/P : O K /p], so λO K = NH/K (P) = p f . By
Proposition II.7.4.3(v), (viii) of [6] and the product formula,

(√−d

P

)
2,H

=
(√−d

p

) f

2,K
= [

√
−d, λ]p,K =

∏
q
=p

[
√

−d, λ]q,K (7.3)

where q runs over primes of K . If q � 2d then q is unramified in K ((
√−d )1/2)/K . Since ordq(λ) = 0

for all q 
= p, it follows from Proposition II.7.1.1(vi) of [6] that if q � 2pd then [√−d, λ]q,K = 1, so

∏
q
=p

[
√

−d, λ]q,K =
∏

q|d,q�2

[
√

−d, λ]q,K

∏
q|2

[
√

−d, λ]q,K . (7.4)

Suppose q | d and q � 2. Then λ ≡ u (mod qO Kq
) and [√−d, λ]q,K = [√−d, u]q,K . Further, q ramifies

in K/Q, so if � = NK/Q(q), then

[
√

−d, u]q,K = [d, u]�,Q =
(

4u

�

)
,

the first equality by Proposition II.7.1.1(ii), (iv) of [6], and the second by Theorem 1 in §III.1.2 of [19]
(and the fact that u is a half-integer). Thus if d′ is the largest odd divisor of d and � runs over primes
of Q, then (7.3) and (7.4) yield

(√−d

P

)
2,H

=
∏
�|d′

(
4u

�

)∏
q|2

[
√

−d, λ]q,K =
(

4u

d′

)
[
√

−d, λ]2,K .
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Combining this with (7.2) gives

ψ(P) =
(

4u

d′

)
[
√

−d, λ]2,K ετD (λ)λ.

Now (iv) follows from Lemma 7.3.
To prove that E is a Q-curve, we need to check that (7.1) holds for all primes P of H as above

and all σ ∈ Gal(H/K ). This is clear from the formulas of (iv). �
By Proposition 4.1(iv), Theorem 7.4(iv) gives formulas for |E(O K /P)|.

Remark 7.5. Suppose that d ≡ 2 or 3 (mod 4), and suppose that 3 � d. Let A be the elliptic curve

A =
⎧⎨
⎩

E(
√−d )

τD : y2 = x3 + dγ2
48 x − d

√−dγ3
864 if d ≡ 3 (mod 4),

E(−√
d )

τD : y2 = x3 − dγ2
48 x − d

√
dγ3

864 if d ≡ 2 (mod 4).

By §6 of [2] or Theorem 2 of [16], γ2 ∈ Q( j) (this is where 3 � d is used), so A is defined over Q( j) and
is isomorphic over Q( j) to the E of Theorem 7.4. By (2.3) and Lemma 3.4(i), j(A) = j and �(A) = −d3,
and A is a Q-curve by Theorem 7.4(iii). When d is a prime p, A is the model given by Gross in [7,8]
for the Q-curve that he denoted A(p). When 3 � d and d ≡ 7 (mod 8) (respectively, d ≡ 3 (mod 8)),
A is the curve E1 (respectively, E−1) considered by Stark in Theorem 1 of [26].

8. Elliptic curves over FFFp with p ≡ 1 (mod 4)

Theorem 8.2 below, which uses Theorem 5.3, gives a simple formula for the number of points on
an ordinary elliptic curve E over Fp when p ≡ 1 (mod 4) and EndF̄p

(E) = OQ(
√−d ) with d ≡ 2 or

3 (mod 4).
We will use the following lemma, which is a variant of Deuring’s Lifting Theorem.

Lemma 8.1. Suppose p is prime, E is an ordinary elliptic curve over Fp , and O := EndFp (E) is an order in
an imaginary quadratic field K . Let H = K ( j(O)). Then there are an elliptic curve E over H and a prime P

of H such that O H/P ∼= Fp , EndH (E ) = O, j(E ) = j(O), and the reduction of E modulo P is isomorphic to E
over Fp .

Proof. Since the proof is easy when j = 0 or 1728, we can reduce to the case O× = {±1}. Since E is
ordinary, E has a canonical lifting Ecan to Qp (see Theorem 3.3 on p. 172 of [11]), i.e., Ecan is an elliptic
curve over Qp that reduces to E , and EndQp (Ecan) = EndFp (E) = O. The action of EndQp (Ecan) on the
space Ω of holomorphic differentials induces an embedding K ∼= EndQp (Ecan) ⊗ Q ↪→ End(Ω) ∼= Qp .
By the theory of complex multiplication (see Theorem 5.7(iii) of [23]), we can fix an embed-
ding Qp ↪→ C under which j(Ecan) = j(O). Since K ⊂ Qp and j(O) = j(Ecan) ∈ Qp , we have
H = K ( j(O)) ⊂ Qp . Let P = O H ∩ pZp . Then P is a prime of H with residue field O H/P ∼= Fp .
Since Ecan is a lift of E , j(O) = j(Ecan) reduces to j(E) modulo P.

Let A be an elliptic curve over H with j(A) = j(O). Then Ecan is a quadratic twist of A by some
δ ∈ Q×

p . Choose δ′ ∈ Q× so that u := δ′/δ is in Z×
p and let E be the quadratic twist of A by δ′ .

Then �(E ) = u6�(Ecan), which is in Z×
p since Ecan has good reduction at p. Thus E is an elliptic

curve over H with good reduction at P and with j(E ) = j(O). In particular, EndH (E ) = O. Since
the reduction Ẽ of E modulo P has j-invariant j(E), and Aut(E) = O× = {±1}, it follows that Ẽ is
a quadratic twist of E . Thus replacing E by a quadratic twist ensures that Ẽ is isomorphic to E over
O H/P = Fp . �
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If a ∈ F×
p is a square, let ( a

p )4 be the quartic residue symbol defined by

(
a

p

)
4
∈ {±1},

(
a

p

)
4
≡ a(p−1)/4 (mod p).

Theorem 8.2. Suppose p is prime, E is an ordinary elliptic curve over Fp , and O := EndFp (E) is an order in
an imaginary quadratic field K . Suppose further that p ≡ 1 (mod 4), and the discriminant D of O is either odd
and not −3, or is congruent to 4 or 8 (mod 16). Then:

(i) the discriminant �(E) of E is a square in F×
p ,

(ii) there are u, v ∈ 1
2 Z such that u2 + |D|v2 = p and λ := u + v

√
D ∈ O satisfies

λ3 ≡ 1 (mod 4O) if D is odd,

(−1)(p−1)/4λ ≡ 1 or 1 + √
D (mod 4O) if D ≡ 4 (mod 16),

λ ≡ 1 or −1 + √
D (mod 4O) if D ≡ 8 (mod 16),

(iii) if u is as in (ii), then |E(Fp)| = p + 1 − 2(
�(E)

p )4u.

Proof. Let j = j(O) and H = K ( j). Using Lemma 8.1, fix an elliptic curve E : y2 = x3 + ax + b over H
and a prime P of H such that O H/P ∼= Fp , j(E ) = j, and the reduction of E modulo P is isomor-
phic over Fp to E . Let p = P ∩ K . Since O H/P ∼= Fp , we have NH/K (P) = p, so p is principal with
a generator λ = u + v

√
D ∈ O. In particular u2 + |D|v2 = NK/Q(λ) = p. Since p ≡ 1 (mod 4), we

have P � 2.
Suppose first that D is odd. Then (O/2O)× ∼= (O K /2O K )× has order 1 or 3, so λ3 ≡ 1 (mod 2O).

Further, NK/Q(λ3) = p3 ≡ 1 (mod 4). A straightforward computation shows that the only elements in
(O/4O)× that are 1 mod 2O and have norm 1 are ±1, so λ3 ≡ ±1 (mod 4O). Replace λ by −λ, if
necessary, to ensure that λ3 ≡ 1 (mod 4O).

Now suppose D ≡ 4 or 8 (mod 16). Since NK/Q(λ) = p ≡ 1 (mod 4), a straightforward computation
in (O/4O)× shows that λ ≡ ±1 or ±1 +√

D (mod 4O). Replace λ by −λ, if necessary, to ensure that
(−1)(p−1)/4λ ≡ 1 or 1 + √

D (mod 4O) when D ≡ 4 (mod 16), and λ ≡ 1 or −1 + √
D (mod 4O)

when D ≡ 8 (mod 16). Note that if D ≡ 8 (mod 16) then p ≡ 1 (mod 8).
Thus we have (ii). Note that if u′, v ′ ∈ 1

2 Z is another pair satisfying (ii), then u′ + v ′√D ∈ O is
a generator of a prime of K above p, so u′ = ±u and v ′ = ±v . By the congruences on λ in (ii), we
have u′ = u, i.e., the u satisfying (ii) is unique.

Let τD be as defined by (6.2). We will apply Theorem 5.3 to E with τ = τD . Let ν = 1 if D is
odd, and ν = i if D is even. By Proposition 6.2, ετD (λ) = ν(p−1)/2 (we use here that p ≡ 1 (mod 8) if
D ≡ 8 (mod 16)). By Theorem 5.3, since TrK/Q(λ) = 2u,

∣∣E(Fp)
∣∣ = ∣∣E (O H/P)

∣∣ = p + 1 − 2ν(p−1)/2
(

6bνγ3

P

)
2

u. (8.1)

Note that (2533b)2/�(E ) = j(E ) − 1728 = ±(νγ3)
2. It follows from Lemma 3.4(ii), (iii) and p ≡

1 (mod 4) that modulo P, �(E ) is a square and

ν(p−1)/2
(

6bνγ3

P

)
2
≡ ν(p−1)/2(6bνγ3)

(p−1)/2 ≡ (
62b2( j(E ) − 1728

))(p−1)/4

= (
21238b4/�(E )

)(p−1)/4 ≡
(

�(E)−1

p

)
4
=

(
�(E)

p

)
4
.

Since the outer terms are ±1, they must be equal. Now combine this with (8.1). �
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Remark 8.3. With notation as in Theorem 8.2, if E is supersingular rather than ordinary, and if further
p � 5, then |E(Fp)| = p + 1.
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