2 research outputs found

    Autonomous Obstacle Collision Avoidance System for UAVs in rescue operations

    Get PDF
    The Unmanned Aerial Vehicles (UAV) and its applications are growing for both civilian and military purposes. The operability of an UAV proved that some tasks and operations can be done easily and at a good cost-efficiency ratio. Nowadays, an UAV can perform autonomous tasks, by using waypoint mission navigation using a GPS sensor. These autonomous tasks are also called missions. It is very useful to certain UAV applications, such as meteorology, vigilance systems, agriculture, environment mapping and search and rescue operations. One of the biggest problems that an UAV faces is the possibility of collision with other objects in the flight area. This can cause damage to surrounding area structures, humans or the UAV itself. To avoid this, an algorithm was developed and implemented in order to prevent UAV collision with other objects. “Sense and Avoid” algorithm was developed as a system for UAVs to avoid objects in collision course. This algorithm uses a laser distance sensor called LiDAR (Light Detection and Ranging), to detect objects facing the UAV in mid-flights. This light sensor is connected to an on-board hardware, Pixhawk’s flight controller, which interfaces its communications with another hardware: Raspberry Pi. Communications between Ground Control Station or RC controller are made via Wi-Fi telemetry or Radio telemetry. “Sense and Avoid” algorithm has two different modes: “Brake” and “Avoid and Continue”. These modes operate in different controlling methods. “Brake” mode is used to prevent UAV collisions with objects when controlled by a human operator that is using a RC controller. “Avoid and Continue” mode works on UAV’s autonomous modes, avoiding collision with objects in sight and proceeding with the ongoing mission. In this dissertation, some tests were made in order to evaluate the “Sense and Avoid” algorithm’s overall performance. These tests were done in two different environments: A 3D simulated environment and a real outdoor environment. Both modes worked successfully on a simulated 3D environment, and “Brake” mode on a real outdoor, proving its concepts.Os veículos aéreos não tripulados (UAV) e as suas aplicações estão cada vez mais a ser utilizadas para fins civis e militares. A operacionalidade de um UAV provou que algumas tarefas e operações podem ser feitas facilmente e com uma boa relação de custo-benefício. Hoje em dia, um UAV pode executar tarefas autonomamente, usando navegação por waypoints e um sensor de GPS. Essas tarefas autónomas também são designadas de missões. As missões autónomas poderão ser usadas para diversos propósitos, tais como na meteorologia, sistemas de vigilância, agricultura, mapeamento de áreas e operações de busca e salvamento. Um dos maiores problemas que um UAV enfrenta é a possibilidade de colisão com outros objetos na área, podendo causar danos às estruturas envolventes, aos seres humanos ou ao próprio UAV. Para evitar tais ocorrências, foi desenvolvido e implementado um algoritmo para evitar a colisão de um UAV com outros objetos. O algoritmo "Sense and Avoid" foi desenvolvido como um sistema para UAVs de modo a evitar objetos em rota de colisão. Este algoritmo utiliza um sensor de distância a laser chamado LiDAR (Light Detection and Ranging), para detetar objetos que estão em frente do UAV. Este sensor é ligado a um hardware de bordo, a controladora de voo Pixhawk, que realiza as suas comunicações com outro hardware complementar: o Raspberry Pi. As comunicações entre a estação de controlo ou o operador de comando RC são feitas via telemetria Wi-Fi ou telemetria por rádio. O algoritmo "Sense and Avoid" tem dois modos diferentes: o modo "Brake" e modo "Avoid and Continue". Estes modos operam em diferentes métodos de controlo do UAV. O modo "Brake" é usado para evitar colisões com objetos quando controlado via controlador RC por um operador humano. O modo "Avoid and Continue" funciona nos modos de voo autónomos do UAV, evitando colisões com objetos à vista e prosseguindo com a missão em curso. Nesta dissertação, alguns testes foram realizados para avaliar o desempenho geral do algoritmo "Sense and Avoid". Estes testes foram realizados em dois ambientes diferentes: um ambiente de simulação em 3D e um ambiente ao ar livre. Ambos os modos obtiveram funcionaram com sucesso no ambiente de simulação 3D e o mode “Brake” no ambiente real, provando os seus conceitos

    A História da Alimentação: balizas historiográficas

    Full text link
    Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema
    corecore