15 research outputs found
Therapeutic exercise attenuates neutrophilic lung injury and skeletal muscle wasting
Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs. We found that a short duration of moderate intensity exercise in ALI mice attenuated muscle ring finger 1 (MuRF1)?mediated atrophy of the limb and respiratory muscles and improved limb muscle force generation. Exercise also limited the influx of neutrophils into the alveolar space through modulation of a coordinated systemic neutrophil chemokine response. Granulocyte colony-stimulating factor (G-CSF) concentrations were systemically reduced by exercise in ALI mice, and in vivo blockade of the G-CSF receptor recapitulated the lung exercise phenotype in ALI mice. Additionally, plasma G-CSF concentrations in humans with acute respiratory failure (ARF) undergoing early mobility therapy showed greater decrements over time compared to control ARF patients. Together, these data provide a mechanism whereby early mobility therapy attenuates muscle wasting and limits ongoing alveolar neutrophilia through modulation of systemic neutrophil chemokines in lung-injured mice and humans.Fil: Files, D. Clark. School Of Medicine; Estados UnidosFil: Liu, Chun. School Of Medicine; Estados UnidosFil: Pereyra, Andrea Soledad. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BioquĂmicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias MĂ©dicas. Instituto de Investigaciones BioquĂmicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Wang, Zhong Min. University Wake Forest; Estados Unidos. School Of Medicine; Estados UnidosFil: Aggarwal, Neil. Johns Hopkins Asthma And Allergy Center; Estados UnidosFil: D´Alessio, Franco. Johns Hopkins Asthma And Allergy Center; Estados UnidosFil: Garibaldi, Brian T.. Johns Hopkins Asthma and Allergy Center; Estados UnidosFil: Mock, Jason R.. Johns Hopkins Asthma and Allergy Center; Estados UnidosFil: Singer, Benjamin D.. Johns Hopkins Asthma and Allergy Center; Estados UnidosFil: Feng, Xin. Wake Forest School of Medicine; Estados UnidosFil: Yammani, Raghunatha R.. Wake Forest School of Medicine; Estados UnidosFil: Zhang, Tan. Wake Forest School of Medicine; Estados UnidosFil: Lee, Amy L.. Wake Forest School of Medicine; Estados UnidosFil: Philpott, Sydney. Wake Forest School of Medicine; Estados UnidosFil: Lussier, Stephanie. Wake Forest School of Medicine; Estados UnidosFil: Purcell, Lina. Wake Forest School of Medicine; Estados UnidosFil: Chou, Jeff. Wake Forest School of Medicine; Estados UnidosFil: Seeds, Michael. Wake Forest School of Medicine; Estados UnidosFil: King, Landon S.. Johns Hopkins Asthma and Allergy Center; Estados UnidosFil: Morris, Peter E.. Wake Forest School of Medicine; Estados UnidosFil: Delbono, Osvaldo. School Of Medicine; Estados Unido
Therapeutic exercise attenuates neutrophilic lung injury and skeletal muscle wasting
Early mobilization of critically ill patients with the acute respiratory distress syndrome (ARDS) has emerged as a therapeutic strategy that improves patient outcomes, such as the duration of mechanical ventilation and muscle strength. Despite the apparent efficacy of early mobility programs, their use in clinical practice is limited outside of specialized centers and clinical trials. To evaluate the mechanisms underlying mobility therapy, we exercised acute lung injury (ALI) mice for 2 days after the instillation of lipopolysaccharides into their lungs. We found that a short duration of moderate intensity exercise in ALI mice attenuated muscle ring finger 1 (MuRF1)–mediated atrophy of the limb and respiratory muscles and improved limb muscle force generation. Exercise also limited the influx of neutrophils into the alveolar space through modulation of a coordinated systemic neutrophil chemokine response. Granulocyte colony-stimulating factor (G-CSF) concentrations were systemically reduced by exercise in ALI mice, and in vivo blockade of the G-CSF receptor recapitulated the lung exercise phenotype in ALI mice. Additionally, plasma G-CSF concentrations in humans with acute respiratory failure (ARF) undergoing early mobility therapy showed greater decrements over time compared to control ARF patients. Together, these data provide a mechanism whereby early mobility therapy attenuates muscle wasting and limits ongoing alveolar neutrophilia through modulation of systemic neutrophil chemokines in lung-injured mice and humans.Facultad de Ciencias Médica
Dietary saturated fatty acid palmitate promotes cartilage lesions and activates the unfolded protein response pathway in mouse knee joints.
Increased intake of dietary saturated fatty acids has been linked to obesity and the development of Osteoarthritis (OA). However, the mechanism by which these fats promote cartilage degradation and the development of OA is not clearly understood. Here, we report the effects of consumption of common dietary saturated and unsaturated fatty acids, palmitate and oleate, respectively, on body weight, metabolic factors, and knee articular cartilage in a mouse model of diet-induced obesity. Mice fed on a diet rich in saturated or unsaturated fatty acid gained an equal amount of weight; however, mice fed a palmitate diet, but not a control or oleate diet, exhibited more cartilage lesions and increased expression of 1) unfolded protein response (UPR)/endoplasmic reticulum (ER) stress markers including BIP, P-IRE1α, XBP1, ATF4, and CHOP; 2) apoptosis markers CC3 and C-PARP; and 3) negative cell survival regulators Nupr1 and TRB3, in knee articular cartilage. Palmitate-induced apoptosis was confirmed by TUNEL staining. Likewise, dietary palmitate was also increased the circulatory levels of classic proinflammatory cytokines, including IL-6 and TNF-α. Taken together, our results demonstrate that increased weight gain is not sufficient for the development of obesity-linked OA and suggest that dietary palmitate promotes UPR/ER stress and cartilage lesions in mouse knee joints. This study validates our previous in vitro findings and suggests that ER stress could be the critical metabolic factor contributing to the development of diet/obesity induced OA
Role of the Hypoxia-Inducible Factor Pathway in Normal and Osteoarthritic Meniscus and in Mice after Destabilization of the Medial Meniscus
Objective: Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development.
Methods: Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1β, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type (n = 36) and Epas1+/- (n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology.
Results: HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/- mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point.
Conclusion: The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress
Plasma membrane delivery, endocytosis and turnover of transcobalamin receptor in polarized human intestinal epithelial cells
Cells that are metabolically active and in a high degree of differentiation and proliferation require cobalamin (Cbl: vitamin B12) and they obtain it from the circulation bound to transcobalamin (TC) via the transcobalamin receptor (TC-R). This study has investigated the plasma membrane dynamics of TC-R expression in polarized human intestinal epithelial Caco-2 cells using techniques of pulse-chase labelling, domain-specific biotinylation and cell fractionation. Endogenously synthesized TC-R turned over with a half-life (T1/2) of 8 h following its delivery to the basolateral plasma membrane (BLM). The T1/2 of BLM delivery was 15 min and TC-R delivered to the BLM was endocytosed and subsequently degraded by leupeptin-sensitive proteases. However, about 15% of TC-R endocytosed from the BLM was transcytosed (T1/2, 45 min) to the apical membranes (BBM) where it underwent endocytosis and was degraded. TC-R delivery to both BLM and BBM was inhibited by Brefeldin A and tunicamycin, but not by wortmannin or leupeptin. Colchicine inhibited TC-R delivery to BBM, but not BLM. At steady state, apical TC-R was associated with megalin and both these proteins were enriched in an intracellular compartment which also contained Rab5 and transferrin receptor. These results indicate that following rapid delivery to both plasma membrane domains of Caco-2 cells, TC-R undergoes constitutive endocytosis and degradation by leupeptin-sensitive proteases. TC-R expressed in apical BBM complexes with megalin during its transcytosis from the BLM