428 research outputs found
Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems
Stenotrophomonas maltophilia KB2 is known to produce different enzymes of dioxygenase family. The aim of our studies was to determine activity of these enzymes after induction by benzoic acids in cometabolic systems with nitrophenols. We have shown that under cometabolic conditions KB2 strain degraded 0.25–0.4 mM of nitrophenols after 14 days of incubation. Simultaneously degradation of 3 mM of growth substrate during 1–3 days was observed depending on substrate as well as cometabolite used. From cometabolic systems with nitrophenols as cometabolites and 3,4-dihydroxybenzoate as a growth substrate, dioxygenases with the highest activity of protocatechuate 3,4-dioxygenase were isolated. Activity of catechol 1,2- dioxygenase and protocatechuate 4,5-dioxygenase was not observed. Catechol 2,3-dioxygenase was active only in cultures with 4-nitrophenol. Ability of KB2 strain to induce and synthesize various dioxygenases depending on substrate present in medium makes this strain useful in bioremediation of sites contaminated with different aromatic compounds
High-Throughput Phenotypic Characterization of Pseudomonas aeruginosa Membrane Transport Genes
The deluge of data generated by genome sequencing has led to an increasing reliance on bioinformatic predictions, since the traditional experimental approach of characterizing gene function one at a time cannot possibly keep pace with the sequence-based discovery of novel genes. We have utilized Biolog phenotype MicroArrays to identify phenotypes of gene knockout mutants in the opportunistic pathogen and versatile soil bacterium Pseudomonas aeruginosa in a relatively high-throughput fashion. Seventy-eight P. aeruginosa mutants defective in predicted sugar and amino acid membrane transporter genes were screened and clear phenotypes were identified for 27 of these. In all cases, these phenotypes were confirmed by independent growth assays on minimal media. Using qRT-PCR, we demonstrate that the expression levels of 11 of these transporter genes were induced from 4- to 90-fold by their substrates identified via phenotype analysis. Overall, the experimental data showed the bioinformatic predictions to be largely correct in 22 out of 27 cases, and led to the identification of novel transporter genes and a potentially new histamine catabolic pathway. Thus, rapid phenotype identification assays are an invaluable tool for confirming and extending bioinformatic predictions
Anti-cyanobacterial activity of Moringa oleifera seeds
Filtrates from crushed Moringa oleifera seeds were tested for their effects on growth and Photosystem II efficiency of the common bloom-forming cyanobacterium Microcystis aeruginosa. M. aeruginosa populations exhibited good growth in controls and treatments with 4- and 8-mg crushed Moringa seeds per liter, having similar growth rates of 0.50 (±0.01) per day. In exposures of 20- to 160-mg crushed Moringa seeds L−1, growth rates were negative and on average −0.23 (±0.05) .day−1. Presumably, in the higher doses of 20- to 160-mg crushed seeds per liter, the cyanobacteria died, which was supported by a rapid drop in the Photosystem II efficiency (ΦPSII), while the ΦPSII was high and unaffected in 0, 4, and 8 mg L−1. High-density populations of M. aeruginosa (chlorophyll-a concentrations of ∼270 µg L−1) were reduced to very low levels within 2 weeks of exposure to ≥80-mg crushed seeds per liter. At the highest dosage of 160 mg L−1, the ΦPSII dropped to zero rapidly and remained nil during the course of the experiment (14 days). Hence, under laboratory conditions, a complete wipeout of the bloom could be achieved. This is the first study that yielded evidence for cyanobactericidal activity of filtrate from crushed Moringa seeds, suggesting that Moringa seed extracts might have a potential as an effect-oriented measure lessening cyanobacterial nuisance
Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria)
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 670–679, doi:10.1038/ismej.2011.128.Akinetes are dormancy cells commonly found among filamentous cyanobacteria, many of which are toxic and/or nuisance, bloom-forming species. Development of akinetes from vegetative cells is a process that involves morphological and biochemical modifications. Here we applied a single cell approach to quantify genome and ribosome content of akinetes and vegetative cells in Aphanizomenon ovalisporum (Cyanobacteria). Vegetative cells of A. ovalisporum were naturally polyploid and contained on average 8 genome copies per cell. However, the chromosomal content of akinetes increased up to 450 copies, with an average value of 119 genome copies per akinete, 15 fold higher that in vegetative cells. Based on fluorescence in situ hybridization with a probe targeting 16S rRNA and detection with confocal laser scanning microscopy we conclude that ribosomes accumulated in akinetes to a higher level than that found in vegetative cells. We further present evidence that this massive accumulation of nucleic acids in akinetes is likely supported by phosphate supplied from inorganic polyphosphate bodies that were abundantly present in vegetative cells, but notably absent from akinetes. These results are interpreted in the context of cellular investments for proliferation following long term dormancy, as the high nucleic acid content would provide the basis for extended survival, rapid resumption of metabolic activity and cell division upon germination.Supported by the Gruss Lipper Foundation research award (AS). This study was part of the Joint German-Israeli-Project (FKZ 02WT0985, WR803) funded by the German Ministry of Research and Technology (BMBF) and Israel Ministry of Science and Technology (MOST)
Selection of Suitable Reference Genes for RT-qPCR Analyses in Cyanobacteria
Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR) is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works
Vertical Distribution of Epibenthic Freshwater Cyanobacterial Synechococcus spp. Strains Depends on Their Ability for Photoprotection
Epibenthic cyanobacteria often grow in environments where the fluctuation of light intensity and quality is extreme and frequent. Different strategies have been developed to cope with this problem depending on the distribution of cyanobacteria in the water column. and either constant or enhanced levels of carotenoids were assayed in phycocyanin-rich strains collected from 1.0 and 0.5 m water depths. Protein analysis revealed that while the amount of biliproteins remained constant in all strains during light stress and recovery, the amount of D1 protein from photosystem II reaction centre was strongly reduced under light stress conditions in strains from 7.0 m and 1.0 m water depth, but not in strains collected from 0.5 m depth. spp. strains, depending on their genetically fixed mechanisms for photoprotection
Towards a Synthetic Chloroplast
The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices
Defining the Pseudomonas Genus: Where Do We Draw the Line with Azotobacter?
The genus Pseudomonas has gone through many taxonomic revisions over the past 100 years, going from a very large and diverse group of bacteria to a smaller, more refined and ordered list having specific properties. The relationship of the Pseudomonas genus to Azotobacter vinelandii is examined using three genomic sequence-based methods. First, using 16S rRNA trees, it is shown that A. vinelandii groups within the Pseudomonas close to Pseudomonas aeruginosa. Genomes from other related organisms (Acinetobacter, Psychrobacter, and Cellvibrio) are outside the Pseudomonas cluster. Second, pan genome family trees based on conserved gene families also show A. vinelandii to be more closely related to Pseudomonas than other related organisms. Third, exhaustive BLAST comparisons demonstrate that the fraction of shared genes between A. vinelandii and Pseudomonas genomes is similar to that of Pseudomonas species with each other. The results of these different methods point to a high similarity between A. vinelandii and the Pseudomonas genus, suggesting that Azotobacter might actually be a Pseudomonas
- …