44 research outputs found

    Regulation of cytokinesis by spindle-pole bodies

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Cell Biology 8 (2006): 891-893, doi:10.1038/ncb1449.In the fission yeast Schizosaccharomyces pombe, cytokinesis is thought to be controlled by the daughter spindle pole body (SPB) through a regulatory pathway, the Septation Initiation Network (SIN). Here we demonstrate that laser ablation of both but not a single SPB results in cytokinesis failure. Ablation of just the daughter SPB often leads to activation of the SIN on the mother and successful cytokinesis. Thus, either SPB can drive cytokinesis.This work was supported by National Institutes of Health grants GMS 59363 (to A.K.), GMS 69670 (to F.C), and by the Human Frontiers Science Program grant RGP0064 (to AK)

    TOR and PKA Pathways Synergize at the Level of the Ste11 Transcription Factor to Prevent Mating and Meiosis in Fission Yeast

    Get PDF
    [Background]: In the fission yeast Schizosaccharomyces pombe, the TOR (target of rapamycin) and PKA (protein kinase A) signaling transduction pathways regulate the expression of genes required for cell growth and sexual differentiation in response to the nutritional environment. Inhibition of Tor2 signaling results in the induction of genes involved in sexual differentiation, and the cells undergo mating and meiosis, even under good nutritional conditions. The same phenotype is observed in mutants in which the PKA pathway is inactive. By contrast, Tor2 overexpression or mutations that hyperactivate PKA signaling impair sexual differentiation, even under poor nutritional conditions. Accordingly, a very important question is to understand the molecular mechanism by which these two pathways coordinately regulate gene expression in response to nutrients. [Methodology/Principal Findings]: Here we demonstrate that TOR and PKA pathways operate coordinately to negatively regulate sexual differentiation by inhibiting the nuclear accumulation of the Ste11 transcription factor. However, the Tor2 pathway is unable to block the nuclear localization of Ste11 under good nutritional conditions when the PKA pathway is inactive. Using microarray analyses, we found that both pathways inhibit sexual differentiation by blocking ste11-dependent gene expression. [Conclusions/Significance]: We conclude that both the PKA and the TOR pathways inhibit Ste11 nuclear accumulation to repress Ste11-dependent gene expression. However, the PKA pathway plays a quantitatively more important role than the TOR pathway in this process.N.V. is supported by a postdoctoral grant from the Carlos III Institute, Ministerio de Sanidad. Our group is supported by grants from la Junta de Castilla y Leon (Grupo de Excelencia grant GR265) and the Spanish Ministry of Science and Innovation (BFU2008-01808 and Consolider Ingenio CSD2007-00015).Peer reviewe

    Factors associated with dropout from treatment for eating disorders: a comprehensive literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dropout (DO) is common in the treatment of eating disorders (EDs), but the reasons for this phenomenon remain unclear. This study is an extensive review of the literature regarding DO predictors in EDs.</p> <p>Methods</p> <p>All papers in PubMed, PsycINFO and Cochrane Library (1980-2009) were considered. Methodological issues and detailed results were analysed for each paper. After selection according to inclusion criteria, 26 studies were reviewed.</p> <p>Results</p> <p>The dropout rates ranged from 20.2% to 51% (inpatient) and from 29% to 73% (outpatient). Predictors of dropout were inconsistent due to methodological flaws and limited sample sizes. There is no evidence that baseline ED clinical severity, psychiatric comorbidity or treatment issues affect dropout. The most consistent predictor is the binge-purging subtype of anorexia nervosa. Good evidence exists that two psychological traits (high maturity fear and impulsivity) and two personality dimensions (low self-directedness, low cooperativeness) are related to dropout.</p> <p>Conclusion</p> <p>Implications for clinical practice and areas for further research are discussed. Particularly, these results highlight the need for a shared definition of dropout in the treatment of eating disorders for both inpatient and outpatient settings. Moreover, the assessment of personality dimensions (impulse control, self-efficacy, maturity fear and others) as liability factors for dropout seems an important issue for creating specific strategies to reduce the dropout phenomenon in eating disorders.</p

    Push-me-pull-you: how microtubules organize the cell interior

    Get PDF
    Dynamic organization of the cell interior, which is crucial for cell function, largely depends on the microtubule cytoskeleton. Microtubules move and position organelles by pushing, pulling, or sliding. Pushing forces can be generated by microtubule polymerization, whereas pulling typically involves microtubule depolymerization or molecular motors, or both. Sliding between a microtubule and another microtubule, an organelle, or the cell cortex is also powered by molecular motors. Although numerous examples of microtubule-based pushing and pulling in living cells have been observed, it is not clear why different cell types and processes employ different mechanisms. This review introduces a classification of microtubule-based positioning strategies and discusses the efficacy of pushing and pulling. The positioning mechanisms based on microtubule pushing are efficient for movements over small distances, and for centering of organelles in symmetric geometries. Mechanisms based on pulling, on the other hand, are typically more elaborate, but are necessary when the distances to be covered by the organelles are large, and when the geometry is asymmetric and complex. Thus, taking into account cell geometry and the length scale of the movements helps to identify general principles of the intracellular layout based on microtubule forces

    Mathematical Model of a Cell Size Checkpoint

    Get PDF
    How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 → M transition. Cdr2 is localized in the middle cell region (midcell) whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT) fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed

    The Fission Yeast XMAP215 Homolog Dis1p Is Involved in Microtubule Bundle Organization

    Get PDF
    Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling

    Redundant Mechanisms Prevent Mitotic Entry Following Replication Arrest in the Absence of Cdc25 Hyper-Phosphorylation in Fission Yeast

    Get PDF
    Following replication arrest the Cdc25 phosphatase is phosphorylated and inhibited by Cds1. It has previously been reported that expressing Cdc25 where 9 putative amino-terminal Cds1 phosphorylation sites have been substituted to alanine results in bypass of the DNA replication checkpoint. However, these results were acquired by expression of the phosphorylation mutant using a multicopy expression vector in a genetic background where the DNA replication checkpoint is intact. In order to clarify these results we constructed a Cdc25(9A)-GFP native promoter integrant and examined its effect on the replication checkpoint at endogenous expression levels. In this strain the replication checkpoint operates normally, conditional on the presence of the Mik1 kinase. In response to replication arrest the Cdc25(9A)-GFP protein is degraded, suggesting the presence of a backup mechanism to eliminate the phosphatase when it cannot be inhibited through phosphorylation

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    HEMORHEOLOGICAL PROFILE IN CASES OF CHRONIC INFECTIONS

    No full text
    corecore