25 research outputs found

    Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this recordData Availability: All relevant data are within the paper and its Supporting Information files: S1 Data and S2 Data.Oviparous animals across many taxa have evolved diverse strategies that deter egg predation, providing valuable tests of how natural selection mitigates direct fitness loss. Communal egg laying in nonsocial species minimizes egg predation. However, in cannibalistic species, this very behavior facilitates egg predation by conspecifics (cannibalism). Similarly, toxins and aposematic signaling that deter egg predators are often inefficient against resistant conspecifics. Egg cannibalism can be adaptive, wherein cannibals may benefit through reduced competition and added nutrition, but since it reduces Darwinian fitness, the evolution of anticannibalistic strategies is rife. However, such strategies are likely to be nontoxic because deploying toxins against related individuals would reduce inclusive fitness. Here, we report how D. melanogaster use specific hydrocarbons to chemically mask their eggs from cannibal larvae. Using an integrative approach combining behavioral, sensory, and mass spectrometry methods, we demonstrate that maternally provisioned pheromone 7,11-heptacosadiene (7,11-HD) in the eggshell’s wax layer deters egg cannibalism. Furthermore, we show that 7,11-HD is nontoxic, can mask underlying substrates (for example, yeast) when coated upon them, and its detection requires pickpocket 23 (ppk23) gene function. Finally, using light and electron microscopy, we demonstrate how maternal pheromones leak-proof the egg, consequently concealing it from conspecific larvae. Our data suggest that semiochemicals possibly subserve in deceptive functions across taxa, especially when predators rely on chemical cues to forage, and stimulate further research on deceptive strategies mediated through nonvisual sensory modules. This study thus highlights how integrative approaches can illuminate our understanding on the adaptive significance of deceptive defenses and the mechanisms through which they operate.Swiss National Science FoundationEuropean Research CouncilDeutsche ForschungsgemeinschaftBaden Württemberg Stiftung and Zukunftskolleg of the University of Konstan

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other

    Transgenerational Effects of Parental Larval Diet on Offspring Development Time, Adult Body Size and Pathogen Resistance in Drosophila melanogaster

    Get PDF
    Environmental conditions experienced by parents are increasingly recognized to affect offspring performance. We set out to investigate the effect of parental larval diet on offspring development time, adult body size and adult resistance to the bacterium Serratia marcescens in Drosophila melanogaster. Flies for the parental generation were raised on either poor or standard diet and then mated in the four possible sex-by-parental diet crosses. Females that were raised on poor food produced larger offspring than females that were raised on standard food. Furthermore, male progeny sired by fathers that were raised on poor food were larger than male progeny sired by males raised on standard food. Development times were shortest for offspring whose one parent (mother or the father) was raised on standard and the other parent on poor food and longest for offspring whose parents both were raised on poor food. No evidence for transgenerational effects of parental diet on offspring disease resistance was found. Although paternal effects have been previously demonstrated in D. melanogaster, no earlier studies have investigated male-mediated transgenerational effects of diet in this species. The results highlight the importance of not only considering the relative contribution each parental sex has on progeny performance but also the combined effects that the two sexes may have on offspring performance

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Adaptation to Abundant Low Quality Food Improves the Ability to Compete for Limited Rich Food in Drosophila melanogaster.

    Get PDF
    The rate of food consumption is a major factor affecting success in scramble competition for a limited amount of easy-to-find food. Accordingly, several studies report positive genetic correlations between larval competitive ability and feeding rate in Drosophila; both become enhanced in populations evolving under larval crowding. Here, we report the experimental evolution of enhanced competitive ability in populations of D. melanogaster previously maintained for 84 generations at low density on an extremely poor larval food. In contrast to previous studies, greater competitive ability was not associated with the evolution of higher feeding rate; if anything, the correlation between the two traits across lines tended to be negative. Thus, enhanced competitive ability may be favored by nutritional stress even when competition is not intense, and competitive ability may be decoupled from the rate of food consumption

    Predatory cannibalism in Drosophila melanogaster larvae.

    Get PDF
    Hunting live prey is risky and thought to require specialized adaptations. Therefore, observations of predatory cannibalism in otherwise non-carnivorous animals raise questions about its function, adaptive significance and evolutionary potential. Here we document predatory cannibalism on larger conspecifics in Drosophila melanogaster larvae and address its evolutionary significance. We found that under crowded laboratory conditions younger larvae regularly attack and consume 'wandering-stage' conspecifics, forming aggregations mediated by chemical cues from the attacked victim. Nutrition gained this way can be significant: an exclusively cannibalistic diet was sufficient for normal development from eggs to fertile adults. Cannibalistic diet also induced plasticity of larval mouth parts. Finally, during 118 generations of experimental evolution, replicated populations maintained under larval malnutrition evolved enhanced propensity towards cannibalism. These results suggest that, at least under laboratory conditions, predation on conspecifics in Drosophila is a functional, adaptive behaviour, which can rapidly evolve in response to nutritional conditions

    The impact of infection on host competition and its relationship to parasite persistence in a Daphnia-microparasite system

    Get PDF
    Evolutionary studies often estimate fitness components with the aim to make predictions about the outcome of selection. Depending on the system and the question, different fitness components are used, but their usefulness for predicting the outcome of selection is rarely tested. Here we estimate host fitness components in different ways with the aim to test how well they agree with each other and how well they predict host fitness at the population level in the presence of the parasite. We use a Daphnia magna-microparasite system to study the competitive ability of host clones in the absence and presence of the parasite, the infection intensity of the parasite in individuals of twelve host clones (an estimate of both host resistance and parasite reproductive success), and parasite persistence in small host populations (an estimate of R 0 of the parasite). Analysis of host competitive ability and parasite persistence reveals strong host genotype effects, while none are found for infection intensity. Host competitive ability further shows a genotype-specific change upon infection, which is correlated with the relative persistence of the parasite in the competing hosts. Hosts in which the parasite persists better suffer a competitive disadvantage in the parasite’s presence. This suggests that in this system, parasite- mediated selection can be predicted by parasite persistence, but not by parasite infection intensity
    corecore