40 research outputs found

    Evidence for modulation of pericryptal sheath myofibroblasts in rat descending colon by Transforming Growth Factor Ξ² and Angiotensin II.

    Get PDF
    BACKGROUND: Absorption of water and Na(+) in descending colonic crypts is dependent on the barrier function of the surrounding myofibroblastic pericryptal sheath. Here the effects of high and low Na(+) diets and exposure to whole body ionising radiation on the growth and activation of the descending colonic pericryptal myofibroblasts are evaluated. In addition the effect of a post-irradiation treatment with the angiotensin converting enzyme inhibitor Captopril was investigated. METHODS: The levels of Angiotensin II type 1 receptor (AT1), ACE, collagen type IV, transforming growth factor-Ξ² type 1 receptor (TGF-Ξ²R1), OB cadherin and Ξ±-smooth muscle actin in both descending colon and caecum were evaluated, using immunocytochemistry and confocal microscopy, in rats fed on high and low Na(+) diets (LS). These parameters were also determined during 3 months post-irradiation with 8Gy from a (60)Co source in the presence and absence of the angiotensin converting enzyme inhibitor, Captopril. RESULTS: Increases in AT1 receptor (135.6% Β± 18.3, P < 0.001); ACE (70.1% Β± 13.1, P < 0.001); collagen type IV (49.6% Β± 15.3, P < 0.001); TGF-Ξ²1 receptors (291.0% Β± 26.5, P < 0.001); OB-cadherin (26.3% Β± 13.8, P < 0.05) and Ξ±-smooth muscle actin (82.5% Β± 12.4, P < 0.001) were observed in the pericryptal myofibroblasts of the descending colon after LS diet. There are also increases in AT1 receptor and TGF-Ξ²1 receptor, smooth muscle actin and collagen type IV after irradiation. Captopril reduced all these effects of irradiation on the pericryptal sheath and also decreased the amount of collagen and smooth muscle actin in control rats (P < 0.001). CONCLUSIONS: These results demonstrate an activation of descending colonic myofibroblasts to trophic stimuli, or irradiation, which can be attenuated by Captopril, indicative of local trophic control by angiotensin II and TGF-Ξ² release

    On the effects of mechanical stress of biological membranes in modeling of swelling dynamics of biological systems

    Get PDF
    We highlight mechanical stretching and bending of membranes and the importance of membrane deformations in the analysis of swelling dynamics of biological systems, including cells and subcellular organelles. Membrane deformation upon swelling generates tensile stress and internal pressure, contributing to volume changes in biological systems. Therefore, in addition to physical (internal/external) and chemical factors, mechanical properties of the membranes should be considered in modeling analysis of cellular swelling. Here we describe an approach that considers mechanical properties of the membranes in the analysis of swelling dynamics of biological systems. This approach includes membrane bending and stretching deformations into the model, producing a more realistic description of swelling. We also discuss the effects of membrane stretching on swelling dynamics. We report that additional pressure generated by membrane bending is negligible, compared to pressures generated by membrane stretching, when both membrane surface area and volume are variable parameters. Note that bending deformations are reversible, while stretching deformation may be irreversible, leading to membrane disruption when they exceed a certain threshold level. Therefore, bending deformations need only be considered in reversible physiological swelling, whereas stretching deformations should also be considered in pathological irreversible swelling. Thus, the currently proposed approach may be used to develop a detailed biophysical model describing the transition from physiological to pathological swelling mode.National Aeronautics & Space Administration (NASA):80NSSC19M0049; PR Space Grant (NASA):NNX15AI11Hinfo:eu-repo/semantics/publishedVersio

    Plasmodial sugar transporters as anti-malarial drug targets and comparisons with other protozoa

    Get PDF
    Glucose is the primary source of energy and a key substrate for most cells. Inhibition of cellular glucose uptake (the first step in its utilization) has, therefore, received attention as a potential therapeutic strategy to treat various unrelated diseases including malaria and cancers. For malaria, blood forms of parasites rely almost entirely on glycolysis for energy production and, without energy stores, they are dependent on the constant uptake of glucose. Plasmodium falciparum is the most dangerous human malarial parasite and its hexose transporter has been identified as being the major glucose transporter. In this review, recent progress regarding the validation and development of the P. falciparum hexose transporter as a drug target is described, highlighting the importance of robust target validation through both chemical and genetic methods. Therapeutic targeting potential of hexose transporters of other protozoan pathogens is also reviewed and discussed

    Hypertonic Stress Induces VEGF Production in Human Colon Cancer Cell Line Caco-2: Inhibitory Role of Autocrine PGE2

    Get PDF
    Vascular Endothelial Growth Factor (VEGF) is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PG)E2 are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE2 generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE2 generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE2 production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE2 on VEGF production, Caco-2 cells were treated with cPLA2 (ATK) and COX-2 (NS-398) inhibitors, that completely block PGE2 generation. The Caco-2 cells were also treated with a non selective PGE2 receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE2 or selective EP2 receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE2 appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl2 was decreased by inhibition of concomitant PGE2 generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE2 plays an inhibitory role on VEGF production by Caco-2 cells exposed to hyperosmotic stress through EP2 activation

    Integration of Evolutionary Features for the Identification of Functionally Important Residues in Major Facilitator Superfamily Transporters

    Get PDF
    The identification of functionally important residues is an important challenge for understanding the molecular mechanisms of proteins. Membrane protein transporters operate two-state allosteric conformational changes using functionally important cooperative residues that mediate long-range communication from the substrate binding site to the translocation pathway. In this study, we identified functionally important cooperative residues of membrane protein transporters by integrating sequence conservation and co-evolutionary information. A newly derived evolutionary feature, the co-evolutionary coupling number, was introduced to measure the connectivity of co-evolving residue pairs and was integrated with the sequence conservation score. We tested this method on three Major Facilitator Superfamily (MFS) transporters, LacY, GlpT, and EmrD. MFS transporters are an important family of membrane protein transporters, which utilize diverse substrates, catalyze different modes of transport using unique combinations of functional residues, and have enough characterized functional residues to validate the performance of our method. We found that the conserved cores of evolutionarily coupled residues are involved in specific substrate recognition and translocation of MFS transporters. Furthermore, a subset of the residues forms an interaction network connecting functional sites in the protein structure. We also confirmed that our method is effective on other membrane protein transporters. Our results provide insight into the location of functional residues important for the molecular mechanisms of membrane protein transporters

    Metformin and the gastrointestinal tract

    Get PDF
    Metformin is an effective agent with a good safety profile that is widely used as a first-line treatment for type 2 diabetes, yet its mechanisms of action and variability in terms of efficacy and side effects remain poorly understood. Although the liver is recognised as a major site of metformin pharmacodynamics, recent evidence also implicates the gut as an important site of action. Metformin has a number of actions within the gut. It increases intestinal glucose uptake and lactate production, increases GLP-1 concentrations and the bile acid pool within the intestine, and alters the microbiome. A novel delayed-release preparation of metformin has recently been shown to improve glycaemic control to a similar extent to immediate-release metformin, but with less systemic exposure. We believe that metformin response and tolerance is intrinsically linked with the gut. This review examines the passage of metformin through the gut, and how this can affect the efficacy of metformin treatment in the individual, and contribute to the side effects associated with metformin intolerance

    Estrogen-dependent regulation of sodium/hydrogen exchanger-3 (NHE3) expression via estrogen receptor Ξ² in proximal colon of pregnant mice

    Get PDF
    Although constipation is very common during pregnancy, the exact mechanism is unknown. We hypothesized that the involvement of estrogen receptor (ER) in the regulation of electrolyte transporter in the colon leads to constipation. In this study, the intestines of normal female ICR mouse and pregnant mice were examined for the expression of ERΞ² and ERΞ² by immunohistochemistry and in situ hybridization. ERΞ±, but not ERΞ±, was expressed in surface epithelial cells of the proximal, but not distal, colon on pregnancy days 10, 15, and 18, but not day 5, and the number of ERΞ±-positive cells increased signiWcantly during pregnancy. Expression of NHE3, the gene that harbors estrogen response element, examined by immunohistochemistry and western blotting, was localized in the surface epithelial cells of the proximal colon and increased in parallel with ERΞ² expression. In ovariectomized mice, NHE3 expression was only marginal and was up-regulated after treatment with 17- estradiol (E2), but not E 2 + ICI 182,780 (estrogen receptor antagonist). Moreover, knock-down of ERΞ² expression by electroporetically transfected siRNA resulted in a signiWcant reduction of NHE3 expression. These results indicate that ERΞ² regulates the expression of NHE3 in the proximal colon of pregnant mice through estrogen action, suggesting the involvement of increased sodium absorption by up-regulated NHE3 in constipation during pregnancy

    Lactose permease H+-lactose symporter: mechanical switch or Brownian ratchet?

    No full text
    Lactose permease structure is deemed consistent with a mechanical switch device for H+-coupled symport. Because the crystallography-assigned docking position of thiodigalactoside (TDG) does not make close contact with several amino acids essential for symport; the switch model requires allosteric interactions between the proton and sugar binding sites. The docking program, Autodock 3 reveals other lactose-docking sites. An alternative cotransport mechanism is proposed where His-322 imidazolium, positioned in the central pore equidistant (5–7β€…Γ…) between six charged amino acids, Arg-302 and Lys-319 opposing Glu-269, Glu-325, Asp-237, and Asp-240, transfers a proton transiently to an H-bonded lactose hydroxyl group. Protonated lactose and its dissociation product H3O+ are repelled by reprotonated His-322 and drift in the electrostatic field toward the cytosol. This Brownian ratchet model, unlike the conventional carrier model, accounts for diminished symport by H322N mutant; how H322 mutants become uniporters; why exchanging Lys-319 with Asp-240 paradoxically inactivates symport; how some multiple mutants become revertant transporters; the raised export rate and affinity toward lactose of uncoupled mutants; the altered specificity toward lactose, melibiose, and galactose of some mutants, and the proton dissociation rate of H322 being 100-fold faster than the symport turnover rate
    corecore