314 research outputs found

    A D-vine copula mixed model for joint meta-analysis and comparison of diagnostic tests

    Get PDF
    For a particular disease, there may be two diagnostic tests developed, where each of the tests is subject to several studies. A quadrivariate generalised linear mixed model (GLMM) has been recently proposed to joint meta-analyse and compare two diagnostic tests. We propose a D-vine copula mixed model for joint meta-analysis and comparison of two diagnostic tests. Our general model includes the quadrivariate GLMM as a special case and can also operate on the original scale of sensitivities and specificities. The method allows the direct calculation of sensitivity and specificity for each test, as well as the parameters of the summary receiver operator characteristic (SROC) curve, along with a comparison between the SROCs of each test. Our methodology is demonstrated with an extensive simulation study and illustrated by meta-analysing two examples where two tests for the diagnosis of a particular disease are compared. Our study suggests that there can be an improvement on GLMM in fit to data since our model can also provide tail dependencies and asymmetries

    Chebyshev type inequalities by means of copulas

    Get PDF

    Hybrid copula mixed models for combining case-control and cohort studies in meta-analysis of diagnostic tests

    Get PDF
    Copula mixed models for trivariate (or bivariate) meta-analysis of diagnostic test accuracy studies accounting (or not) for disease prevalence have been proposed in the biostatistics literature to synthesize information. However, many systematic reviews often include case-control and cohort studies, so one can either focus on the bivariate meta-analysis of the case-control studies or the trivariate meta-analysis of the cohort studies, as only the latter contains information on disease prevalence. In order to remedy this situation of wasting data we propose a hybrid copula mixed model via a combination of the bivariate and trivariate copula mixed model for the data from the case-control studies and cohort studies, respectively. Hence, this hybrid model can account for study design and also due to its generality can deal with dependence in the joint tails. We apply the proposed hybrid copula mixed model to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma

    Copula Eigenfaces with Attributes: Semiparametric Principal Component Analysis for a Combined Color, Shape and Attribute Model

    Get PDF
    Principal component analysis is a ubiquitous method in parametric appearance modeling for describing dependency and variance in datasets. The method requires the observed data to be Gaussian-distributed. We show that this requirement is not fulfilled in the context of analysis and synthesis of facial appearance. The model mismatch leads to unnatural artifacts which are severe to human perception. As a remedy, we use a semiparametric Gaussian copula model, where dependency and variance are modeled separately. This model enables us to use arbitrary Gaussian and non-Gaussian marginal distributions. Moreover, facial color, shape and continuous or categorical attributes can be analyzed in an unified way. Accounting for the joint dependency between all modalities leads to a more specific face model. In practice, the proposed model can enhance performance of principal component analysis in existing pipelines: The steps for analysis and synthesis can be implemented as convenient pre- and post-processing steps

    A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence

    Get PDF
    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality

    Variable order Mittag-Leffler fractional operators on isolated time scales and application to the calculus of variations

    Full text link
    We introduce new fractional operators of variable order on isolated time scales with Mittag-Leffler kernels. This allows a general formulation of a class of fractional variational problems involving variable-order difference operators. Main results give fractional integration by parts formulas and necessary optimality conditions of Euler-Lagrange type.Comment: This is a preprint of a paper whose final and definite form is with Springe

    Eliciting Dirichlet and Gaussian copula prior distributions for multinomial models

    Get PDF
    In this paper, we propose novel methods of quantifying expert opinion about prior distributions for multinomial models. Two different multivariate priors are elicited using median and quartile assessments of the multinomial probabilities. First, we start by eliciting a univariate beta distribution for the probability of each category. Then we elicit the hyperparameters of the Dirichlet distribution, as a tractable conjugate prior, from those of the univariate betas through various forms of reconciliation using least-squares techniques. However, a multivariate copula function will give a more flexible correlation structure between multinomial parameters if it is used as their multivariate prior distribution. So, second, we use beta marginal distributions to construct a Gaussian copula as a multivariate normal distribution function that binds these marginals and expresses the dependence structure between them. The proposed method elicits a positive-definite correlation matrix of this Gaussian copula. The two proposed methods are designed to be used through interactive graphical software written in Java
    • 

    corecore