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Abstract In this paper,we propose novelmethods of quanti-
fying expert opinion about prior distributions formultinomial
models. Two different multivariate priors are elicited using
median andquartile assessments of themultinomial probabil-
ities. First, we start by eliciting a univariate beta distribution
for the probability of each category. Then we elicit the
hyperparameters of the Dirichlet distribution, as a tractable
conjugate prior, from those of the univariate betas through
various forms of reconciliation using least-squares tech-
niques. However, a multivariate copula function will give
a more flexible correlation structure between multinomial
parameters if it is used as their multivariate prior distri-
bution. So, second, we use beta marginal distributions to
construct a Gaussian copula as a multivariate normal distri-
bution function that binds these marginals and expresses the
dependence structure between them. The proposed method
elicits a positive-definite correlation matrix of this Gaussian
copula. The two proposed methods are designed to be used
through interactive graphical software written in Java.
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1 Introduction

Bayesian statistical methods provide a formalmechanism for
taking into account prior knowledge. Inmany circumstances,
prior knowledge is based on historical data that are only
recorded in the form of the personal experience of experts.
Then expert opinion must be quantified as a prior distribu-
tion if the information is to be used. This can be done through
an elicitation process which is defined as asking the expert
for information that is then used as a basis for encoding the
parameters of a subjective prior distribution. The method of
quantifying opinionmust be designed for the samplingmodel
of interest and the form of prior distribution that is to be used.

One important sampling model that has attracted limited
attention in the elicitation context is the multinomial model.
This model is used in many scientific and industrial applica-
tions. For example, it is frequently applied to voting behavior
in political science (e.g. Chamberlin and Featherston 1986),
to the compositions of rocks in geology (e.g. Weltje 2002)
and to patterns of consumer selection preferences in micro-
economics (e.g. Manski 2007). The model is so common
that good elicitation methods for quantifying opinion about
its parameters are clearly needed. For example, in their recent
applied research, Fu et al. (2012) andConn et al. (2013) stated
that an elicited informative prior for the multinomial model
would be a possible alternative.

Here we are concerned with the most common case of the
multinomial model, where each observation has the same
probability of falling into any specified category and obser-
vations are independent of each other. Then observations can
be modelled to follow a multinomial distribution with, say,
probability pi that an observation falls in the i th category. To
quantify an expert’s opinions about the pi , we assume some
distributional form to represent her opinion and uncertainty.
Instead of directly asking the expert to assess the parame-
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ters of the distribution, we ask her to make assessments that
determine appropriate values for the parameters of that dis-
tribution, which are referred to as its hyperparameters.

The Dirichlet distribution, which is the conjugate prior
distribution for the parameters of a multinomial distribution,
is one natural choice for representing an expert’s opinion. A
number of elicitation methods that follow this approach have
been proposed in the literature. For example, Bunn (1978)
encoded a Dirichlet prior from assessed beta marginal distri-
butions through hypothetical future samples. Chaloner and
Duncan (1987) based their elicitation method on assessing a
sample size and modal values of the Dirichlet variates. Dorp
and Mazzuchi (2004) introduced a numerical algorithm for
encoding the Dirichlet parameters from a number of quan-
tile assessments that is equal to the number of parameters.
Recently, two elicitation methods have been proposed for the
Dirichlet distribution by reconciling the assessed parameters
of its univariate beta conditional distributions (Elfadaly and
Garthwaite 2013) and of its univariate marginal beta distrib-
utions (Zapata-Vázquez et al. 2014).

The first method proposed in the current paper elicits the
hyperparameters of theDirichlet distribution from those of its
marginal beta distributions through forms of reconciliation
that use least-squares techniques. The usage of least-squares
techniques for reconciliation has been discussed in Albert
et al. (2012). Our proposed method differs from those of
Bunn (1978) and Chaloner and Duncan (1987) as we require
only medians and quartiles to be assessed. We assess more
quartiles than Dorp and Mazzuchi (2004) and then recon-
cile them to encode hyperparameters. Our method encodes
a Dirichlet distribution using its beta marginal distributions
rather than its conditional distributions as in Elfadaly and
Garthwaite (2013). Our proposed reconciliation methods are
different from those that have been independently developed
in Zapata-Vázquez et al. (2014) for reconciling beta mar-
ginal distributions into a Dirichlet distribution for a set of
proportions.

However, while the standard Dirichlet distribution offers
tractability andmathematical simplicity, it has been criticized
as too inflexible to represent a broad range of prior informa-
tion about the parameters of multinomial models (Aitchison
1986; O’Hagan and Forster 2004). Specifically, the Dirichlet
variates are always negatively correlated and the Dirichlet
distribution contains the same number of parameters as the
number of categories.With k categories, k−1 parameters are
required to describe the proportion in each category, leaving
only one parameter to describe their dependence structure.
This may sometimes be insufficient to give a reasonable rep-
resentation of an expert’s opinions.

In a Dirichlet prior distribution, the dependence structure
that is imposed by only one parameter is a pattern of negative
correlations between the multinomial probabilities of all cat-
egories. This negative correlation pattern is not appropriate

in many practical situations. For example, if the categories
represent the political parties in some country, with the cor-
responding multinomial probabilities reflecting the voting
behavior in the next elections, a high probability of voting
for a specific radical party might be accompanied by rather
high probabilities of voting for other radical parties. A suit-
able prior in this case should imply a positive correlation
pattern between parties of the same political views.

In the case of multinomial models, a particular diffi-
culty is to elicit assessments that satisfy all the constraints
of mathematical coherence. For example, the probabilities
of each category must be non-negative and sum to one,
which we refer to as the unit-sum constraint. Other con-
straints are implicit and less intuitive. We believe that a
well-designed elicitation method should lead to coherent
assessments without the expert having to be conscious of
coherence constraints. This is not straightforward, especially
with dependent variables in multivariate distributions. The
expert has no built-in prior distribution to assess directly.
Instead, she must be asked to quantify her opinions through
questions she can both comprehend and answer. We believe
it is important that the expert should be able to focus solely
on her opinions when giving assessments.

To date, perhaps due to the difficulty discussed above,
elicitation methods for multinomial sampling have mostly
been proposed for modelling opinion by a Dirichlet distrib-
ution. An exception is the work by Elfadaly and Garthwaite
(2013), whomodel opinion by aConnor–Mosimann distribu-
tion. However, this form of generalized Dirichlet distribution
provides a structure that is only slightly richer than the stan-
dardDirichlet distribution.Methods that yield amore flexible
distribution than the Dirichlet distribution are long overdue.
The present paper focuses on elicitation methods that yield
a much more flexible distribution than the Dirichlet prior
distribution.

Motivated by the deficiencies of the standardDirichlet dis-
tribution, several authors have constructed new families of
distributions for proportions that allow more general types
of dependence structures. These distributions include, for
example, the generalized Dirichlet distribution (Connor and
Mosimann 1969), the multivariate normal distribution of log
contrasts (Leonard 1975), and the multivariate logistic nor-
mal distribution (Aitchison 1986; Elfadaly and Garthwaite
2016).

A possible general multivariate distribution, that can
serve as a prior distribution for multinomial models, is con-
structed through using a multivariate copula function. A
copula is a multivariate function that represents a joint mul-
tivariate cumulative distribution function (CDF) in terms of
one-dimensional marginal CDFs. Hence, it joins marginal
distributions into a multivariate distribution that has those
marginals. The theoretical foundation of copula functions
was introduced in Sklar (1959), where he gave Sklar’s Theo-
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rem which states that any joint distribution can be written
in a copula form. The marginal distributions can thus be
chosen independently from the dependence structure that is
represented by the copula function. For an introduction to
copulas, see for example Joe (1997), Frees andValdez (1998)
or Nelsen (1999).

The use of copula functions to elicit multivariate distrib-
utions has been considered in the literature; see Jouini and
Clemen (1996) or Clemen and Reilly (1999), among oth-
ers. In general, the joint distribution can be elicited by first
assessing each marginal distribution. Then the dependence
structure is elicited through the copula function. Different
families and classes of copula functions have been defined
for both bivariate and multivariate distributions. Jouini and
Clemen (1996) used bivariate and multivariate Archimedean
families and Frank’s families of copulae to aggregate multi-
ple experts’ opinions about a random quantity. The book by
Kurowicka and Cooke (2006) lists and compares different
copula functions and discusses many other methods of mod-
elling high-dimensional dependence. However, the simplest
and most intuitive family of copulae is the inversion copula
(Nelsen 1999). This has the form

C[G1(x1), . . . ,Gk(xk)]
= F(1,...,k)

{
F−1
1 [G1(x1)], . . . , F−1

k [Gk(xk)]
}

, (1)

where Gi are the known marginal CDFs of x1, . . . , xk ,
F(1,...,k) is their assumed multivariate CDF, and its mar-
ginals are Fi . Hence, the marginal functions G1, . . . ,Gk are
coupled through F(1,...,k), via the quantile functions evalu-
ated for each marginal, into a new multivariate distribution
given by the copula function C . It has to be mentioned
here that the arguments of the inversion copula function
in (1) are the quantile functions F−1

i [.] (i = 1, . . . , k).
It is therefore appealing to exploit the inversion copula in
our elicitation method in which we ask the expert to assess
only medians and quartiles. Experimental work in the liter-
ature suggests that the assessment of quantile functions is
often the best way to elicit information from experts. See for
example Garthwaite et al. (2005) and the references therein.
Specifically, we believe that medians and quartiles are eas-
ier for an expert to assess than other quantile functions as
they can be obtained by the first two steps of equally likely
subdivisions using the bisection method (Garthwaite et al.
2005).

The distribution F(1,...,k) in (1) has sometimes been taken
as a multivariate t-distribution (Demarta and McNeil 2005),
or even as aDirichlet distribution (Lewandowski 2008).Most
commonly though, it is selected as a multivariate normal dis-
tribution with a joint CDF, F(1,...,k) = Φk,R, and standard
normal marginal CDFs, Fi = Φ. This gives a Gaussian cop-
ula (Clemen and Reilly 1999) that is parameterized by the

correlation matrix R of a multivariate normal distribution.
To elicit R, Clemen and Reilly (1999) suggest that a pair-
wise rank-order correlation between each Xi and X j , such
as Spearman’sρi, j orKendall’s τi, j , should be assessed. Then
properties of the multivariate normal distribution are used to
transform them into the product-moment Pearson correlation
ri, j as follows:

ri, j = 2 sin(πρi, j/6), or ri, j = sin(πτi, j/2). (2)

The product-moment correlation matrix R is then formed
from the elements ri, j . In practice, however, it may be prefer-
able to elicit correlations on a numerical scale rather than
rank-order correlations. In this paper, we use quartile assess-
ments to obtain the product-moment correlation matrix R.

Clemen and Reilly (1999) favour eliciting rank-order cor-
relations, not product-moment Pearson correlation, on the
grounds that the latter cannot necessarily be transformed
through the function Φ−1[Gi (.)]. In contrast, rank-order
correlations are transformation respecting regardless of the
choice of the marginal CDF Gi (.), i.e. they are invariant
under strictly monotone increasing transformations of the
form Φ−1[Gi (.)], for any Gi (.). To elicit these correlations,
Clemen and Reilly (1999) mention three methods that can
be used either separately or together. However, none of the
methods is guaranteed to yield a positive-definite correlation
matrix. On the other hand, the elicitation method of Kadane
et al. (1980) has been designed to encode a positive-definite
covariance matrix of a multivariate t-distribution as a con-
jugate prior for the hyperparameters of a normal multiple
linear regression model. Their method can be useful in a
variety of multivariate elicitation problems that require the
assessment of positive-definite matrices (Garthwaite et al.
2005, 2013). These clearly include the problem addressed
here, so that we modify their method to form a Gaussian
copula.

Interestingly, no other elicitation method for Gaussian
copulas seems to encode a positive-definite correlation
matrix using quartile assessments. To fill this gap, the sec-
ond proposed method in this paper elicits a Gaussian copula
function with beta marginal distributions as a prior distribu-
tion for multinomial models. Our approach simultaneously
overcomes two problems of themethod of Clemen andReilly
(1999). First, we transform the assessed conditional quartiles
of Xi and X j , through Φ−1[Gi (.)], which enables product-
moment correlations to be computed on the normal scale
without the need of rank-order correlations. Second, the
conditional quartiles are assessed according to the struc-
tural elicitation procedure of Kadane et al. (1980), which
guarantees that the elicited correlation matrix is positive-
definite.

The paper is organized as follows. In Sect. 2, we dis-
cuss our choice of distribution, the Dirichlet prior and the
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Gaussian copula prior, for representing expert uncertainty
relevant to proportions of a categorical variable. We show
how this can be used to specify a prior for the probabili-
ties of a multinomial distribution. In Sect. 3 we describe the
assessment tasks that an expert performs, and in Sect. 4 we
derive hyperparameters of both forms of prior distributions
from the elicited assessments. Sections 3 and 4 also describe
an interactive graphical interface that has been developed to
implement the two proposed elicitation methods. In Sect. 5,
these methods and the implementing software are used by
an environmental ecologist to quantify his opinion about the
future proportions of different phenotypes of a specific snail
species in theUK.Concluding comments are given in Sect. 6.

2 Two multivariate prior distributions
for a multinomial model

2.1 The multinomial likelihood

Let the random vector W = (W1, . . . ,Wk) be multinomi-
ally distributed with k categories, n trials and a vector of
probabilities p = (p1, . . . , pk), so that

f (w1, w2, . . . , wk) = n!
w1!w2! · · ·wk ! p

w1
1 pw2

2 · · · pwk
k , (3)

where
∑

wi = n, 0 ≤ wi ≤ n, 0 ≤ pi ≤ 1 and
∑

pi = 1.

2.2 The Dirichlet prior distribution

A conjugate prior for the parameter vector p is the Dirichlet
distribution of the form

π(p1, p2, . . . , pk)

= Γ (N )

Γ (a1)Γ (a2) · · · Γ (ak)
pa1−1
1 pa2−1

2 · · · pak−1
k , (4)

where Γ (.) is the gamma function defined by Γ (a) =∫∞
t=0 t

a−1e−tdt , N = ∑
ai and ai are the hyperparameters

representing the relative size of each category, so ai > 0.
The expectation and variance of pi are ai/N and ai (N −

ai )/[N 2(N + 1)] and the covariance between pi and p j is
−aia j/[N 2(N + 1)], where i = 1, . . . , k; j = 1, . . . , k and
i �= j . The marginal distribution of each pi (i = 1, . . . , k)
is a beta distribution (e.g. Wilks 1962),

gi (pi ) = Γ (αi + βi )

Γ (αi )Γ (βi )
pαi−1
i (1 − pi )

βi−1, (5)

where

αi = ai and βi =
∑
j �=i

a j . (6)

To elicit the vector of hyperparameters a = (a1, . . . , ak),
we will exploit this direct relationship between the Dirichlet
distribution and its marginal beta distributions.

2.3 Constructing a Gaussian copula prior distribution

Rather than assuming that the marginal beta distributions
in (5) stem from a Dirichlet distribution, we would like to
allow a more flexible dependence structure via another joint
distribution, with the aim of better representing the expert’s
opinion. A flexible tool for this task is given by the copula
function, as discussed in Sect. 1. This allows us to choose the
marginal distributions independently from the dependence
structure between them.

The best-known example of the inversion copula in (1)
is the Gaussian copula (Clemen and Reilly 1999). For any
random vector X = (X1, . . . , Xk), the Gaussian copula is
defined at the point (x1, . . . , xk) as

C[G1(x1), . . . ,Gk(xk)]
= Φk,R

{
Φ−1[G1(x1)], . . . , Φ−1[Gk(xk)]

}
. (7)

Here Φk,R is the CDF of a k-variate normal distribution
with zero means, unit variances, and a correlation matrix
R that reflects the desired dependence structure. The func-
tion Φ is the marginal standard univariate normal CDF, and
Gi (i = 1, . . . , k) are any chosen marginal CDFs. The mar-
ginal mean and variance of each xi are expressed through
its marginal CDF, Gi (xi ), hence, no other parameters are
required forΦk,R beyond the correlationmatrixR. To be used
as a prior distribution, the density function of the Gaussian
copula is needed. Fortunately, sinceΦk,R andΦ are differen-
tiable, theGaussian copula density function is easily obtained
by differentiating (7) with respect to xi (i = 1, . . . , k); see
for example Clemen and Reilly (1999). This gives

f (x1, . . . , xk |R)

=
∏k

j=1 g j (x j )

|R|1/2 exp

{
−1

2
y′
k(R

−1 − Ik)yk

}
, (8)

where y′
k = (Φ−1[G1(x1)], . . . , Φ−1[Gk(xk)]), gi (.) is the

density function corresponding to the choice of Gi (.) (i =
1, . . . , k), and Ik is the identity matrix of order k.

To construct a Gaussian copula function in the case of a
multinomialmodel, it might seemnatural to assume that each
marginal distribution of pi (i = 1, . . . , k) is a beta distribu-
tion, as in (5), and try to construct a Gaussian copula function
for the multivariate distribution of p. However, applying the
normalizing transformations Yi = Φ−1[Gi (pi )] directly on
the multinomial probabilities pi , where Gi (.) is the assessed
beta CDF, would raise three problems. First, encoding mar-
ginal beta distributions directly on the elements of p might
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result in mathematically incoherent marginal distributions
with mean values that do not sum to one. Second, the inverse
normalizing transformations pi = G−1

i [Φ(Yi )], while pre-
serving themarginal domain of each probability, 0 ≤ pi ≤ 1,
do not necessarily fulfil the unit-sum constraint

∑k
i=1 pi =

1. Third, under the unit-sum constraint on p, the normally
distributed vector y′

k = (Y1, . . . ,Yk) contains a redundant
variable and hence leads to a singular multivariate normal
distribution.

To overcome these problems, we define new variables
Z1, . . . , Zk , where

Z1 = p1, Zi = pi

1 −∑i−1
j=1 p j

,

for i = 2, . . . , k − 1, and Zk = 1. (9)

The inverse transformations are given by

p1 = Z1, pi = Zi

i−1∏
j=1

(1 − Z j ), for i = 2, . . . , k. (10)

Instead of assuming a beta marginal distribution of the
form (5) for each pi (i = 1, . . . , k), we assume that each
Zi (i = 1, . . . , k − 1) has a marginal beta distribution with
parameters α#

i and β#
i to be encoded as in Sect. 4.1. Then

we construct a Gaussian copula function for the multivariate
distribution of zk−1 = (Z1, . . . , Zk−1). The beta marginal
distributions preserve the domain of each Zi (i = 1, . . . , k−
1) on [0, 1], while theGaussian copula accounts only for their
dependence structure. Here, no other constraints need to be
fulfilled on zk−1, while the unit-sum constraint on p is always
attained by virtue of the transformations in (9) and (10).

Using theGaussian copula function, the dependence struc-
ture of the multivariate distribution of Zi , and consequently
of pi , will have high flexibility rather than the limited depen-
dence structure imposed by the Dirichlet distribution. In the
underlying multinomial model, each multinomial parameter
pi represents the probability that an observation falls in the
i th category. Hence, Zi (i = 1, . . . , k − 1) can be defined as
the probability that an observation falls in category i , given
that the first i − 1 categories have been eliminated and the
available categories are only the last k − i + 1 categories.

Connor and Mosimann (1969) argued that if Zi (i =
1, . . . , k − 1) are mutually independent and each Zi ∼
beta(α#

i , β
#
i ), then p has a generalized Dirichlet distribu-

tionwith parameters (α#
1 , . . . , α

#
k−1, β

#
1 , . . . , β#

k−1). Thus the
generalized Dirichlet distribution can be regarded as a spe-
cial case of the Gaussian copula in which Z1, . . . , Zk−1

are independent. If, moreover, β#
i = α#

i+1 + β#
i+1, for

i = 1, . . . , k − 2, then p has a standard Dirichlet distrib-
ution with parameters (α#

1 , . . . , α
#
k−1, β

#
k−1), so the standard

Dirichlet distribution is also a special case of the Gaussian

copula prior. This confirms that the Gaussian copula function
imposes a prior distribution on pwith a dependence structure
that is more flexible than that of the standard and generalized
Dirichlet distributions.

The prior distribution for p is defined in terms of the
prior distribution of zk−1. Let Gi (Zi ) be the CDF of the
beta distribution of Zi with hyperparameters α#

i and β#
i

(i = 1, . . . , k − 1) to be elicited in Sect. 4.1. We assume
that the joint density of zk−1 is given by a Gaussian copula
density,

f (z1, . . . , zk−1|R)

=
∏k−1

j=1 g j (z j )

|R|1/2 exp

{
−1

2
y′
k−1(R

−1 − Ik−1)yk−1

}
, (11)

where y′
k−1 = (Φ−1[G1(Z1)], . . . , Φ−1[Gk−1(Zk−1)]),

and gi (.) is the beta density of Zi (i = 1, . . . , k − 1). The
correlation matrix R and the parameters of the beta densities
are the hyperparameters of the Gaussian copula prior distri-
bution.

Note that the marginal distributions of this joint density
are still the same beta marginal distributions. After elicit-
ing the hyperparameters of the beta distribution for each
Zi (i = 1, . . . , k − 1) as detailed in Sect. 4.1, the prior dis-
tribution is totally known except for the matrix R. Here, R
is the correlation matrix of the multivariate normally distrib-
uted vector yk−1; it needs to be encoded effectively and must
be a positive-definite matrix. The aim is to choose R so as
to model the expert’s opinion about the dependence between
the pi s. In Sect. 4.3, we introduce a method, inspired by
Kadane et al. (1980), to encode the correlation matrix R.
Although the density in (11) is neither a multivariate normal
for p′

k−1 = (p1, . . . , pk−1) nor z′
k−1 = (Z1, . . . , Zk−1), and

the correlation matrix of zk−1 is not an explicit function in
R, the dependence structure between the elements of pk−1,
and consequently that of Zk−1, is indirectly reflected by R.
Moreover, we can still use the multivariate normal proper-
ties to form a positive-definite matrix R by considering the
following normalizing transformations,

Yi = Φ−1[Gi (Zi )], i = 1, . . . , k − 1. (12)

Under the main assumption of the Gaussian copula con-
struction, and from (12), the vector y′

k−1 = (Y1, . . . ,Yk−1)

has a multivariate normal distribution with zero means, unit
variances and a correlationmatrixR, so yk−1 ∼ MVN(0,R).
In our proposed approach, the matrix R is encoded as a
covariance and a correlation matrix of the multivariate nor-
mal random vector yk−1. This is achieved by utilizing the
monotone increasing property of the transformations in (12).
We assess conditional quartiles of pk−1, then transform them
into those of zk−1 and yk−1 using (9) and (12), respectively.
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Correlation coefficients between the elements of yk−1 can
then be estimated using their conditional quartiles and utiliz-
ing properties of the multivariate normal distribution. This is
described in Sects. 3.2.2, 3.2.3 and 4.3.

3 Assessment tasks

With both the Dirichlet and Gaussian copula prior distri-
butions, marginal distributions are each of the beta type.
In both cases, the first set of assessments determines the
hyperparameters of the marginal beta distributions. For the
standard Dirichlet distribution, as detailed in Sect. 3.1 the
expert is asked to assess marginal medians and quartiles
of the probability of each category. These quantiles are the
median and quartiles of the expert’s subjective probability
distribution for each pi ; the distance between the quar-
tiles reflects her uncertainty about the true value of pi . The
marginal median and quartile assessments are obtained in
Sect. 3.1.1. They are used to encode the marginal beta dis-
tribution of each pi (i = 1, . . . , k). In the second part of
the elicitation process, detailed in Sect. 3.2, we obtain the
required assessments to construct a Gaussian copula prior
distribution. Specifically, in Sect. 3.2.1, we obtain the mar-
ginal median and quartile assessments that are required to
encode the marginal beta distributions of Zi (i = 1, . . . , k−
1). Further sets of conditional medians and quartiles are
obtained in Sects. 3.2.2 and 3.2.3; they will be used to
encode the correlation matrix R of the Gaussian copula
prior.

To ensure that the expert understands the request to assess
her median estimate of a proportion, she is told: “You should
consider it equally likely that the true proportion is above
the median or below the median. For example, suppose you
assess the median as 0.6, you should think it equally likely
that the proportion will be above 0.6 as that it will be below
0.6. Hence, if you were asked ‘Would I rather bet on the
proportion being above 0.6 or below 0.6?’, you should find
it hard to decide.” For the lower (upper) quartile assess-
ment, the expert is told: “The lower (upper) quartile divides
the probability below (above) the median in half. Suppose
your assessed median is 0.3 and your assessed lower quar-
tile is 0.2. Then your probability that the proportion is below
0.2 should equal your probability that it is between 0.2 and
0.3.”

3.1 Assessments required for the standard Dirichlet
distribution

3.1.1 Obtaining marginal assessments for p

For each category in turn, the expert is asked to assess a lower
quartile, a median and an upper quartile for the probability

pi , i = 1, . . . , k, say Li , mi and Ui , respectively. In the
practical evolutional example detailed in Sect. 5, the expert
assessed his median, lower and upper quartiles for the future
proportion of each of the 6 different phenotypes of the most
common snail species in theUK, see Table 1.Herewe adopt a
marginal approach, so that the categories are interchangeable
and their order does not matter. In Sect. 4.1, the marginal
medians and quartiles assessed here are used to encode the
parameters αi and βi of each marginal beta distribution of pi
for the standard Dirichlet distribution.

3.2 Assessments required for the Gaussian copula
distribution

3.2.1 Obtaining marginal assessments for zk−1

For category i (i = 2, . . . , k − 1), the expert is asked
to assume that the first i − 1 categories have been elimi-
nated from the analysis and that she should only consider
the remaining k − i + 1 categories, namely categories
i, i + 1, . . . , k. That is, the expert should assume that the
observation does not fall in one of the first i − 1 categories,
but which of the remaining category it falls in is unknown.
Given this situation, the expert is asked to assess the median
of the probability of each of the categories i, i + 1, . . . , k.
Only the assessment for the first of these categories is used
and we denote it m#

i,0. The other assessments are elicited to
improve internal consistency; assessments of means should
sum to one so the assessments of the medians should be close
to one.

In fact, these assessments represent the marginal uncon-
ditional medians of each Zi = pi/(1 − ∑i−1

j=1 p j ), for
i = 2, . . . , k−1.After thesemedians have been assessed, the
expert assesses the marginal unconditional lower and upper
quartile of each Zi . We denote these assessments as L#

i,0 and

U #
i,0 (i = 2, . . . , k − 1). Clearly, since Z1 = p1, we have

L#
1,0 = L1,m#

1,0 = m1 andU #
1,0 = U 1 and these are assessed

as in Sect. 3.1.1. Moreover, by definition, m#
k,0 = 1, since

Zk = 1.
If a Gaussian copula prior distribution is to be encoded,

we define m∗
1,0 as the median of p1, and m∗

i,0 as the median
of (pi |p1 = m∗

1,0, . . . , pi−1 = m∗
i−1,0) for i = 2, . . . , k.

But we do not directly assess m∗
i,0 (i = 1, . . . , k). Instead,

we compute their values from the corresponding marginal
medians,m#

i,0, of Zi (i = 1, . . . , k−1) assessed above. This
can be done by utilizing Lemma 1 (below) to obtain m∗

i,0 in

terms of m#
i,0. The former will be used as the conditioning

values in Sects. 3.2.2 and 3.2.3.

Lemma 1 Under the unit-sum constraint on p, and the mul-
tivariate normality of yk−1, we have
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m∗
1,0 = m#

1,0 and m∗
i,0 = m#

i,0

i−1∏
j=1

(
1 − m#

j,0

)
,

for i = 2, . . . , k.

See the Appendix for a proof of this lemma.
Assessments obtained in this section are used in Sect. 4.1

to encode the hyperparameters α#
i and β#

i of the marginal
beta distribution of Zi (i = 1, . . . , k − 1) for the Gaussian
copula prior distribution.

3.2.2 Assessing conditional quartiles

After finishing the marginal assessment tasks in Sect. 3.2.1,
the expert is asked to give conditional quartile assessments
for specified categories under the assumption that the initial
assessments are the correct values for the other categories.
Specifically, the expert is asked to assume that p1 equals its
initially assessed median value, i.e. p1 = m∗

1,0, and then
gives a lower quartile L∗

2 and an upper quartile U∗
2 for p2.

For each remaining p j , j = 3, . . . , k−1, the expert assesses
the two quartiles L∗

j and U∗
j conditional on p1 = m∗

1,0, . . .,
p j−1 = m∗

j−1,0.
For the last category, the lower (upper) quartile L∗

k (U∗
k )

of pk is automatically shown to the expert once she assesses
the upper (lower) quartile U∗

k−1 (L∗
k−1) of pk−1. The two

quartiles L∗
k andU

∗
k are shown to the expert as a guide to help

her choose L∗
k−1 and U∗

k−1. When p1 = m∗
1,0, . . . , pk−2 =

m∗
k−2,0, from the unit-sum constraint it follows that L∗

k−1 +
U∗
k = U∗

k−1 + L∗
k = 1 − m∗

1,0 − · · · − m∗
k−2,0.

In practice, these conditional assessments constitute an
easy task for the experts to perform. They normally think of
successive category assessments in a conditional way given
their already assessed values for the preceding categories.
For conditional assessments, the order of the categories is
important. We recommend ordering them from the most
probable category to the least probable, unless there is a nat-
ural order to the categories. This ordering leads to assessment
tasks that involve less skewed distributions. See Elfadaly and
Garthwaite (2013) for more detail and examples on this rec-
ommended category ordering.

The conditional quartile assessments of pi |p1, . . . , pi−1

obtained in this section, namely L∗
i and U

∗
i (i = 2, . . . , k −

1), are transformed to the corresponding conditional quartiles
of Zi |Z1, . . . , Zi−1, say L#

i and U #
i (i = 2, . . . , k − 1) as

follows.

L#
i = L∗

i

1 −∑i−1
j=1m

∗
j,0

and U #
i = U∗

i

1 −∑i−1
j=1m

∗
j,0

.

L#
i and U #

i are used to estimate the correlation matrix R of
the Gaussian copula prior, as will be discussed in Sect. 4.3.

3.2.3 Assessing conditional medians

First the expert is asked to assume that the true value of p1
is m∗

1,1, while her median assessment of p1 had been m∗
1,0.

The value specified for m∗
1,1 does not equal m

∗
1,0 and we let

η∗
1 = m∗

1,1 − m∗
1,0. Given the information that p1 = m∗

1,1,
the expert is asked to change her previous medians m∗

j,0 of
each p j , and her new (conditional) median is denoted by
m∗

j,1 ( j = 2, . . . , k). In practice, this question can be phrased
to the expert as: “Suppose that the proportion in the first cat-
egory were actually changed from your original assessment
to the value given on the interactive software graph. If that
were the case, what would be your median estimates of the
proportions in the other categories?”Here, the expert is asked
to sequentially assume that each conditional median assess-
ment she gives at this stage is the true value and that she
should condition on each of them to be true while she is
assessing the remaining conditional medians. For example,
when the expert is asked to assess m∗

4,1, she does not only
assume that p1 = m∗

1,1, but she also assumes that p2 = m∗
2,1

and p3 = m∗
3,1.

In each successive step i , for i = 2, . . . , k−2, the expert is
asked to suppose that the true value of pi ism∗

i,i = m∗
i,0 +η∗

i
(while her initially calculated median of pi had been m∗

i,0)
and that the true values of p1, . . ., pi−1 are equal to their
initially calculated medians, m∗

1,0, . . . ,m
∗
i−1,0, respectively.

Given this information, the expert is asked to revise her ini-
tial median values m∗

j,0 of p j , and the new assessments are
denoted by m∗

j,i ( j = i + 1, . . . , k). Again, as explained in
the case of i = 1, these assessments are also sequentially
conditional assessments for i = 2, . . . , k − 2, i.e. m∗

j,i is
assessed under the condition that p1 = m∗

1,0, . . . , pi−1 =
m∗

i−1,0, pi = m∗
i,i , pi+1 = m∗

i+1,i , . . . , p j−1 = m∗
j−1,i , for

all j = i + 1, . . . , k.
The assumed conditioning true value m∗

i,i should be (a)
reasonably different from the initial value m∗

i,0, so that the
expert revises the previously calculated assessments at the
other categories by a measurable change, but (b) not too dif-
ferent from m∗

i,0, so that it is still a plausible value according
to the expert’s belief. Moreover, as will be shown later, for
mathematical coherence the arbitrary values η∗

i s have to be
chosen such that η∗

i �= 0 (i = 1, . . . , k − 2). To fulfil these
constraints, the lower quartile of each category is taken as the
value form∗

i,i . Hence, we putm
∗
1,1 = L∗

1,0 andm
∗
i,i = L∗

i , so
η∗
1 = L∗

1,0 − m∗
1,0 and η∗

i = L∗
i − m∗

i,0 (i = 2, . . . , k − 2).
The expert uses the software to make her assessments on

an interactive graph.Anexample is illustrated inFig. 1,where
the categories represent 6 phenotypes of snails: yellow-
banded/ yellow-unbanded/ pink-banded/ pink-unbanded/
brown-banded/ brown-unbanded. The conditioning set of
median values are the three right hand side (red) bars at the
first three categories. The expert is asked to assess how her
new median values, shown as the three right hand side (one
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Fig. 1 Software suggestions
for conditional medians. The
following message is shown to
the expert: “The grey boxes
show your original median
assessments. Suppose that the
proportion in the first three
categories were actually the
value given by the red boxes,
what would be your median
estimates of the proportions in
the other categories? Your
assessments appear as blue and
orange boxes. For your
assessment to be internally
consistent, the values given by
the boxes must add up to 1. The
computer suggests values (in
yellow) that are close to your
assessments and that add up to
one.” The grey boxes are the
m∗

i,0, the blue bar is m
∗
1,4 and the

orange bars are m∗
1,5 and m∗

1,6

blue and two orange) bars at the last three categories, will
change based on the new conditioning set. The initially cal-
culated medians of all categories are shown as the left hand
side (grey) bars.

For mathematical coherence, the expert’s assessments
must fulfill the first statement of Lemma 2 below. The second
statement of Lemma 2 gives the conditional medians of Z j ,
say m#

j,i , in terms of the corresponding conditional medi-
ans of p j , m∗

j,i ( j = i + 1, . . . , k). The former are used in
Sect. 4.3 to estimate the correlation matrixR of the Gaussian
copula prior distribution.

Lemma 2 Under the unit-sum constraint on p, and the mul-
tivariate normality of yK−1, for i = 1, . . . , k − 2, we have

1.
∑i

j=1m
∗
j,0 + η∗

i +∑k
j=i+1m

∗
j,i = 1,

2. m#
j,i = m∗

j,i

/(
1 −∑i

r=1 m
∗
r,0 − η∗

i −∑ j−1
r=i+1 m

∗
r,i

)
, for

j = i + 1, . . . , k.

See the Appendix for a proof of this lemma.
By scaling their values, the software normalizes the values

of m∗
i+1,i , . . ., m∗

k,i so that they satisfy Lemma 2. Specifi-

cally, the normalized value ofm∗
j,i is [(1−∑i

r=1 m
∗
r,0−η∗

i )/∑k
r=i+1 m

∗
r,i ]m∗

j,i , for j = i + 1, . . . , k. The expert is told
that the conditional medians must satisfy a mathematical
equation and that a good representation of her assessments
has been calculated. The software displays the normalized
conditional medians as the thinner (yellow) bars in Fig. 1.
The expert has the option of changing these medians until
she feels that the suggested normalized set m∗

i+1,i , . . ., m
∗
k,i

gives an acceptable representation of her opinion. In Fig. 1,
the expert’s conditional assessments are the three right-most
(blue and orange) bars for the last three categories. These are
reasonably coherent, so the suggested values in the thinner
(yellow) bars are almost equal to these assessments.

The current assessment task stops at step k − 2, as we do
not ask for any conditional assessments for the last remaining
category pk . Since the condition of summing to one should
always be fulfilled, conditioning on specific values of all
p1, . . . , pk−1 gives a fixed value for pk .

4 Encoding the hyperparameters

4.1 Encoding the hyperparameters of the beta marginal
distributions

To encode a standard Dirichlet prior distribution, the expert
has already assessed a lower quartile, Li , a median, mi ,
and an upper quartile, Ui , for pi (i = 1, . . . , k), as dis-
cussed in Sect. 3.1.1. But, to encode a Gaussian copula prior
distribution, the expert has already assessed a lower quar-
tile, L#

i,0, a median, m#
i,0, and an upper quartile, U #

i,0, for
Zi (i = 1, . . . , k − 1), as discussed in Sect. 3.2.1. The quar-
tile assessments Li , mi and Ui are used here to encode the
hyperparameters αi and βi of the marginal beta distribution
of each pi (i = 1, . . . , k). Similarly, L#

i,0, m
#
i,0 and U #

i,0 are

used to encode the hyperparameters α#
i and β#

i of the mar-
ginal beta distribution of each Zi (i = 1, . . . , k − 1). The
same method of encoding beta hyperparameters is used in
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both cases, so we denote a general set of quartile assess-
ments by L̃i,0, m̃i,0 and Ũi,0 and show how we use them to
encode the beta hyperparameters denoted by α̃i and β̃i .

The method proposed in Elfadaly and Garthwaite (2013)
is used to encode the two parameters α̃i and β̃i of each mar-
ginal beta distribution. In their approach, the three assessed
quartiles L̃i,0, m̃i,0 and Ũi,0 are substituted in a normal
approximation of the beta distribution to obtain initial values
of the beta parameters. These are then used as the initial val-
ues in a numerical least-squares optimization which encodes
the beta parameters as non-negative values α̃i and β̃i that
minimize

Q = [
G
(
L̃i,0; α̃i , β̃i

)− 0.25
]2 + [

G
(
m̃i,0; α̃i , β̃i

)− 0.5
]2

+[G(Ũi,0; α̃i , β̃i
)− 0.75

]2
, (13)

where G(q; α̃i , β̃i ) is the CDF of a beta distribution with
parameters α̃i and β̃i at the point q. The least-squares opti-
mization enables fast and accurate computation. See, for
example, Albert et al. (2012) and the references therein.

If a Dirichlet prior is to be encoded, the parameters αi =
α̃i and βi = β̃i will be directly reconciled to obtain the
Dirichlet hyperparameters in Sect. 4.2. But for encoding a
Gaussian copula prior, we take α#

i = α̃i and β#
i = β̃i ; these

encoded beta marginal distributions of Z1, . . . , Zk−1 have
no constraint to satisfy—under the transformations in (9)
and (10), the unit-sum constraint on p is always fulfilled for
any encoded beta marginal distributions of Z1, . . . , Zk−1.

4.2 Encoding the Dirichlet hyperparameters

After beta marginal distributions have been assessed for each
category’s probability pi (c.f. Sect. 4.1), the beta parameters
are then adjusted to estimate the Dirichlet hyperparameter
vector as follows. First, note that the system of equations
in (6) does not guarantee a consistent solution for a. This
is because the expert will seldom be fully consistent and
give marginal assessments that are exactly mathematically
coherent. From (6), each marginal step of the elicitation
process provide two estimates for ai and Ni , namely, for
i = 1, . . . , k, we get ai = αi and Ni = αi + βi = ∑k

j=1 a j .
Moreover, the estimated hyperparameters must fulfill the
unit-sum constraint on the expected values of the probabil-
ities. Specifically, if the expected values are denoted by μi

(where μi = ai/Ni , for i = 1, . . . , k) they must satisfy∑k
i=1 μi = 1. If the assessments are not coherent and do

not satisfy these constraints, which is usually the case, initial
assessments will need to be reconciled. Even if the expert
were very consistent and gave reasonably coherent assess-
ments, reconciliation would be needed for correcting small
rounding errors.

Lindley et al. (1979) investigated the reconciliation of
assessments that are inconsistent with the laws of probabili-
ties (incoherent). They developed least-squares procedures
as reconciliation tools that may be used for any expert’s
incoherent assessments. In the spirit of their approach, we
propose the following three options to reconcile incoherent
estimates of the μi and N into mathematically coherent esti-
mates μ∗

i , N
∗, respectively.

(I) Normalizeμi ’s intoμ∗
i ’s that add up to one, i.e. putμ

∗
i =

μi/
∑k

j=1 μ j , for i = 1, . . . , k.
(II) Minimize the sum of squares of differences between μ∗

i
and μi , subject to the constraints 0 < μ∗

i < 1 and∑k
i=1 μ∗

i = 1. So, the μ∗
i are taken as the values that

minimize

S1 =
k∑

i=1

(μ∗
i − μi )

2 + λ

(
k∑

i=1

μ∗
i − 1

)
,

where λ is a Lagrange multiplier.
(III) The precision of each pi , i.e. the inverse of its variance,

can be used as a weight to reflect the expert’s confidence
about eachof her assessments (Lindley et al. 1979). These
weights are used in a weighted least-squares procedure.
Hence we determine the μ∗

i s that minimize

S2 =
k∑

i=1

wi
(
μ∗
i − μi

)2 + λ

(
k∑

i=1

μ∗
i − 1

)
,

where wi = [
αiβi/(αi + βi + 1)(αi + βi )

2
]−1

, for i =
1, . . . , k.

With (I) and (II), N∗ is set equal to the average of the Ni ’s,
while with (III) it is set equal to their weighted average as
N∗ = ∑k

i=1 wi Ni/
∑k

j=1 w j . Estimating μ∗
i and N∗, using

any of the options listed above, makes it easy to estimate ai
by a∗

i , where a
∗
i = μ∗

i N
∗ for i = 1, . . . , k. For options (II)

and (III), the software computationally estimates λ as zero
up to a tolerance of 10−4.

The software elicits three hyperparameter vectors of the
Dirichlet distribution, one vector for each of the above
options. Each vector is then used to compute the correspond-
ing pairs of marginal beta parameters as given in (6). Three
quartiles of each beta marginal distribution are computed
numerically for each Dirichlet hyperparameter vector. The
three sets of quartiles are then displayed to the expert and
she is asked to select the set of quartiles that best represents
her opinion. See Fig. 2: the middle three button groups at
the bottom of the screen offer the options that the expert
can choose for her quantile assessments. (The other buttons
are for navigation to the previous screen or the next screen.)
The vector with the selected set of quartiles will be taken
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Fig. 2 A feedback screen for
Dirichlet elicitation. The
following message is shown to
the expert: The probabilities of
the different categories must add
to one. The quartile assessments
for the different categories must
also meet certain requirements
in order to be internally
consistent. This program gives
three options for reconciling
your assessments to meet these
requirements. Select the option
that best matches your opinion
and then click ‘Next’

as the final elicited hyperparameter vector of the Dirichlet
prior.

The expert is still able, however, to modify any or all of
the selected set of quartiles, in which case beta parameters
are computed again and the final Dirichlet hyperparameter
vector is computed through averaging, as in option (I) above.

4.3 Encoding the Gaussian copula hyperparameters

The normalizing one-to-one functions in (12) are used to
transform the assessed conditional quartiles of zk−1 into con-
ditional quartiles of yk−1, yielding conditional expectations,
variances and covariances of the multivariate normal vari-
ables. To form a positive-definite correlation matrix R, let
yi = (Y1, . . . ,Yi ) and Ri = Var(yi ), for i = 1, . . . , k − 1,
where R1 = Var(Y1) = 1 and the final matrix R = Rk−1.
Supposing thatRi−1 has been estimated as a positive-definite
matrix, an encoding method, based on that of Kadane et al.
(1980), is used to form a positive-definite correlation matrix
Ri (i = 2, . . . , k − 1). The mathematical details of the
method are shown in the Appendix. Since R1 = 1 > 0, by
mathematical induction the full correlationmatrixR = Rk−1

is guaranteed to be positive-definite.
We have to note that, according to this method of elicita-

tion, the variances on the main diagonal of R, say ri,i , i =
1, . . . , k−1, cannot be guaranteed to each equal one, except
for the first element r1,1. It is easy, however, to transform R
intoR∗ = ARA, whereA is a diagonal matrix with a1,1 = 1
and ai,i = 1/

√
ri,i , for i = 2, . . . , k − 1. Then R∗ can be

used as the correlationmatrix in theGaussian copula function

and satisfies both the unit variances and positive-definiteness
requirements. The unit variances in the correlationmatrixR∗
guarantee that eachmarginal distributionGi (Zi ) is still a beta
distribution with the same hyperparameters α#

i and β#
i that

were encoded, for i = 1, . . . , k − 1, in Sect. 4.1.

4.4 Evaluating the encoded priors

A good elicitation method encodes a prior distribution that
captures the expert’s knowledge and beliefs faithfully and
as closely as possible. Thus, a reasonable way to compare
the performance of the two encoded prior distributions is to
check which of them produces values that are closer to the
expert’s original assessments. The aim of the Gaussian cop-
ula prior is to capture the correlation structure better than
the Dirichlet prior, so the conditional medians computed
from each encoded prior distribution can be compared to
the expert’s original assessments of the conditional medians
to check whether this aim has been achieved. We implement
this approach at the end of the evolution example in Sect. 5
to evaluate the encoded priors.

A different quality of probability assessments is calibra-
tion, which measures the agreement between an expert’s
assessed probabilities and reality. Events that are given a
prior probability of occurring of, say, 0.3 should ideally occur
about 30 % of the time. Similarly, a set of subjective 50
% prediction intervals should contain the target event half
the time. A body of psychological research has examined
the calibration of probability assessments in varied contexts;
see (O’Hagan et al. 2006, chapter 4) for a review. How-
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ever, as noted by (O’Hagan et al. 2006, p. 161), “comparing
the elicited probabilities or distributions with the true val-
ues of the events or variables in question does not evaluate
the success of elicitation; it does not compare the elicited
probabilities with the expert’s underlying opinions.”

5 Example: Evolution of the snails in the UK

Environmental scientists are interested in the effect of climate
change on the evolutionary responses of different species.
The brown-lipped banded snail (Cepaea nemoralis) is known
to have a short generation time and tends to sensitively adapt
its shell colour and banding pattern according to its thermal
environment. Silvertown et al. (2011) tested the evolutionary
changes in this type of snail by comparing a recent dataset
with historical datasets from the last century. Data on the
frequency of each phenotype of this species were collected
by volunteers in 15 European countries through the citi-
zen science project Evolution MegaLab (Worthington et al.
2012). Thousands of public volunteers contributed data to
the project by recording the shell colour and banding pattern
of the snails they had observed in each country.

An environmental expert who has worked with these data
is interested in the modelling of ecosystems under future
climate change. In this example, the expert (who is male)
used the elicitation software to quantify his opinion about the
expected proportions of each phenotype of Cepaea nemoralis
snails in the UK in 2050 under the assumption that only
a little is done to reduce climate change (a scenario called
Representative Climate Forcing 6, under which greenhouse
gas emissions continue to rise without strong mitigation). He
advised that three main phenotypes can be considered: yel-
low, pink or brown; each of them can be banded or unbanded.
Hence, any single snail can be categorized in one of six
different phenotypes, so the problem can be formulated as
a multinomial model with six categories. The probabilities
p1, . . . , p6 are the proportions of each phenotype that might
be observed in theUK.Ourmethod and softwarewere used to
quantify the expert’s opinion about his uncertainty regarding
the parameters of this multinomial model, representing his
opinion by both a Dirichlet prior distribution and a Gaussian
copula prior.

After initializing the software and defining the model, the
expert assessed his medians, mi (i = 1, . . . , 6), of the pro-
portion of each of the following 6 phenotypes of Cepaea
nemoralis snails: yellow-banded/ yellow-unbanded/ pink-
banded/ pink-unbanded/ brown-banded/ brown-unbanded.
Then the expert assessed lower and upper quartiles (Li and
Ui ) for the proportion of each phenotype. His assessedmedi-
ans and quartiles are given in Table 1.

These assessments were used to encode a marginal beta
prior distribution, with hyperparameters αi and βi , for the

Table 1 Expert’s assessments of medians and quartiles

Phenotype Lower
quartile
(Li )

Median
(mi )

Upper
quartile
(Ui )

Yellow-banded p1 0.351 0.449 0.551

Yellow-unbanded p2 0.154 0.198 0.240

Pink-banded p3 0.127 0.146 0.182

Pink-unbanded p4 0.048 0.069 0.092

Brown-banded p5 0.056 0.092 0.140

Brown-unbanded p6 0.025 0.042 0.058

Table 2 The encoded hyperparameters of the Dirichlet prior distribu-
tion

a∗
1 a∗

2 a∗
3 a∗

4 a∗
5 a∗

6 N∗

18.33 8.12 6.27 2.96 4.12 1.81 41.60

proportion of phenotypes in each category using equation
(13) in Sect. 4.1. These can then be used to determine the
hyperparameters of a Dirichlet distribution using any of the
three least-squares options detailed in Sect. 4.2. The expert
chose option (II) where the values of the Dirichlet hyperpa-
rameters were encoded as given in Table 2.

The median values and quartiles of the coherent marginal
beta distributions of the Dirichlet variates were computed
and presented to the expert as feedback in Fig. 3. These are
shown as the left hand side (grey) bars for each category.
During this feedback stage he was invited to accept or revise
these quantities by clicking on the right hand side (blue)
bars of each category in Fig. 3. The initial median values,
mi (i = 1, . . . , 6), as assessed by the expert have a sum that
is nearly equal to one, so the coherent medians suggested by
the software in Fig. 3 were close to his median assessments
as shown in Table 1. However, the expert felt that some of
the suggested quartiles were too far apart to be a reason-
able representation of his opinion, and he chose to revise
the suggested quartile values for the last three categories.
These were then used to encode another Dirichlet distribu-
tion with hyperparameters given in Table 3 and this is taken
as the expert’s Dirichlet prior distribution. Table 4 shows the
final coherent set of medians and quartiles after the expert’s
revisions computed from the Dirichlet hyperparameters
in Table 3.

The expert’s initial assessments in Table 1 give hyperpa-
rameter values αi and βi of the marginal beta distributions
that result in different estimates of the Dirichlet hyperpara-
meter N . Specifically, they give Ni = αi +βi (i = 1, . . . , 6)
that range between 11.75 and 73.27. The variability of these
values can be used as a diagnostic check to determine
whether the Dirichlet prior distribution might be a reason-
able representation of the expert’s knowledge. As concluded
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Fig. 3 The coherent marginal
quartiles for the Dirichlet
distribution given as the left
(grey) boxes, with the expert’s
revised values, given as the right
(blue) boxes. The following
message is shown to the expert:
This screen shows the medians
and quartiles that the software
has determined for your prior
distribution. You should change
them if they do not form a
reasonable representation of
your opinion. The grey (left)
boxes are there to show the
coherent quartiles

Table 3 The encoded hyperparameters of the revised Dirichlet prior
distribution

a∗
1 a∗

2 a∗
3 a∗

4 a∗
5 a∗

6 N∗

51.46 22.63 17.06 7.70 10.89 4.29 114.03

Table 4 Medians and quartiles of the revised marginal beta distribu-
tions

Phenotype Lower
quartile

Median Upper
quartile

Yellow-banded p1 0.401 0.451 0.501

Yellow-unbanded p2 0.156 0.194 0.236

Pink-banded p3 0.111 0.144 0.182

Pink-unbanded p4 0.050 0.065 0.082

Brown-banded p5 0.083 0.095 0.107

Brown-unbanded p6 0.027 0.036 0.046

in Elfadaly and Garthwaite (2013), a substantial variation in
the values of Ni (i = 1, . . . , k) indicates that aDirichlet prior
does not capture the expert’s opinionswell. This suggests that
here theDirichlet priormaynot be an adequate representation
of the expert’s opinion, in which case the Gaussian copula
prior is to be preferred.

The expert gave further assessments to encode a Gaussian
copula prior as well, which gains much greater flexibility in
the correlation structure of the parameters of his multino-
mial model. To encode a Gaussian copula prior, the expert
was asked to assess a median value for the proportion of
the yellow-banded phenotype of snails in the UK in 2050.
He assessed this as m#

1,0 = 0.446, the median of Z1 = p1.

As mentioned before in Sect. 3.2.1, m#
1,0 	 m1 = 0.449. To

improve the internal consistencybetween this assessment and
the forthcoming ones, the expert was also asked at this stage
to assess themedian values of the proportions of all other phe-
notypes. These were assessed as 0.198, 0.147, 0.076, 0.091,
0.041. Clearly, these assessments are quite consistent with
the experts’s assessments mi in Table 1.

The expert was then asked to assume that a randomly
selected snail is not yellow-banded. For this snail he was
asked to assess the median probability, m#

2,0, that it belongs
to the yellow-unbanded category. To help the expert, the soft-
ware uses the median values assessed at the previous stage
to suggest a value for the median of Z2 = p2/(1 − p1)
as m#

2,0 = 0.198/(1 − 0.446) = 0.358. Suggested median
values for the remaining categories were also computed and
presented to the expert (See Fig. 4). He accepted the value of
m#

2,0 = 0.358 and all the other suggested median values as a
reasonable representation of his opinion.

Then at each step i (i = 3, 4, 5), assuming that a selected
snail does not belong to the first i − 1 phenotypes, the expert
accepted the suggested value of m#

i,0 as the median of Zi =
pi/(1 − ∑i−1

j=1m
#
j,0), together with the remaining median

values at each step.
Similarly, the expert was asked to assess a lower and an

upper quartile (L#
i,0 andU

#
i,0) for the probability Z1 = p1 and

for Zi (i = 2, . . . , 5) as the probability of belonging to the
i th phenotype given that the snail could not be categorized in
the first i − 1 categories. The full set of median and quartile
assessments obtained at this stage are shown inTable 5. These
assessments were used in the optimization equation (13) in
Sect. 4.1 to encode the hyperparameters α#

i and β#
i of the
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Fig. 4 Unconditional median
assessment for the second
category (m#

2,0 = 0.358). The
following message is shown to
the expert: Assessments are only
required for the categories that
are labelled and have blue or
orange boxes. Assume that you
know an item falls in one of
these categories. Given that
information, what is the
probability that the item will be
in the second category? the
computer’s suggestion for this
category, m#

2,0 = 0.358, is given
by the left-most (blue) box. The
computer’s suggestions for other
categories are given by the other
(orange) boxes

Table 5 Expert’s assessments
for the medians and quartiles of
the Zi variables

Phenotype Lower quartile
(L#

i,0)
Median
(m#

i,0)
Upper quartile
(U#

i,0)

Yellow-banded Z1 0.349 0.446 0.545

Yellow-unbanded Z2 0.253 0.358 0.449

Pink-banded Z3 0.330 0.413 0.495

Pink-unbanded Z4 0.296 0.366 0.438

Brown-banded Z5 0.557 0.688 0.802

Table 6 The encoded hyperparameters of marginal beta distributions

Z1 Z2 Z3 Z4 Z5

α# 5.353 3.906 6.819 7.838 4.531

β# 6.577 6.934 9.607 13.344 2.227

beta distribution of each Zi (i = 1, . . . , 5). The values of
these hyperparameters are given in Table 6.

To encode a correlation matrix for the Gaussian copula
prior, the expert gave conditional assessments that quanti-
fied his opinion about the dependence structure between the
marginal beta distributions. Specifically, he assessed condi-
tional quartile values, L∗

i andU
∗
i , for each i th (i = 2, . . . , 5)

category, under the condition that the assessed medians for
the previous j ( j = 1, . . . , i − 1) categories were actually
their true values. The expert’s five pairs of assessments for
the conditional lower and upper quartiles are given in Table 7.
The quartiles for the last category in Table 7 were automat-
ically computed by the software when the expert assessed

Table 7 Expert’s assessments of conditional quartiles

p2 p3 p4 p5 p6

Conditional lower
quartile (L∗

i )
0.163 0.132 0.067 0.081 0.032

Conditional upper
quartile (U∗

i )
0.230 0.163 0.086 0.100 0.051

two quartiles for the fifth category. This is also illustrated in
Fig. 5.

Next, conditional on the proportion for the first category
being m∗

1,1 = 0.349 (his assessment of its lower quar-

tile, L#
1,0), the expert gave conditional median assessments,

m∗
j,1 ( j = 2, . . . , 6), for the proportions of the five remaining

categories. The number of conditions was then increased in
stages. Table 8 gives all the conditional median assessments,
m∗

j,i (i = 1, . . . , 4; j = i + 1, . . . , 6), where the under-
lined values constitute the conditioning set at each stage. The
assessments reported at each rowofTable 8were sequentially
obtained under the assumption that the previously assessed
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Fig. 5 Assessing conditional
quartiles for the last two
categories (L∗

5 = 0.081 and
U∗
5 = 0.100). The following

message is shown to the expert:
Give your lower and upper
quartile assessments on category
five, assuming that your median
assessments for the first four
categories with (red) boxes are
correct. The implied quartiles
for the last category—the
right-most (yellow) box—are
also shown. To be logical, your
assessment must be below the
upper-most short horizontal
(red) dotted line and should be
between the other two short
(orange) horizontal dotted lines

Table 8 Expert’s assessments of conditional medians. The condi-
tional median assessment in the i th row and j th column is m∗

j,i (i =
1, . . . , 4; j = i + 1, . . . , 6)

p1 p2 p3 p4 p5 p6

0.349 0.279 0.162 0.084 0.088 0.039

0.446 0.163 0.167 0.090 0.092 0.043

0.446 0.198 0.132 0.093 0.089 0.041

0.446 0.198 0.147 0.067 0.094 0.048

The underlined values represent the conditioning set in each row, where
the underlined values in the i th row are m∗

j,0 ( j = 1, . . . , i − 1) and
m∗

i,i for i = 1, . . . , 4

conditional medians at the same line are the true values, not
only the underlined values.

For example, Fig. 1 shows the expert’s assessments of
conditional medians m∗

1,4, m
∗
1,5 and m∗

1,6 for the last three
categories, given that p1 = m∗

1,1 = 0.349, where the condi-
tional median assessments m∗

1,2 = 0.279 and m∗
1,3 = 0.162

are also assumed to be the true values of p2 and p3, respec-
tively. This is one of the sub-stages required to obtain the
assessments in the first row of Table 8. However, the expert
chose not to change his conditional median assessments at
different sub-stages. He only revised his assessments when
the underlined conditioning values were changed, i.e. from
one row to the next in Table 8.

This was the last assessment task, after which the soft-
ware output the encoded hyperparameters, α#

i and β#
i , of

the marginal beta prior distributions of Zi (i = 1, . . . , 5)
as in Table 6. These were computed as detailed in Sect. 4.1
using Eq. (13). The dependence structure between these beta

Table 9 The encoded correlation matrix, R∗, of the Gaussian copula
prior

Y1 Y2 Y3 Y4 Y5

Y1 1.000 −0.742 −0.416 −0.386 −0.079

Y2 −0.742 1.000 0.145 0.031 0.099

Y3 −0.416 0.145 1.000 −0.296 0.076

Y4 −0.386 0.031 −0.296 1.000 0.145

Y5 −0.079 0.099 0.076 0.145 1.000

marginals was quantified as a multivariate Gaussian copula
function with the encoded correlation matrix, R∗, given in
Table 9. This has been encoded as detailed in Sect. 4.3.

The encoded matrix in Table 9 does not give covariances
between the beta distributed variables, Z1, . . . , Z5. Instead,
it gives the covariances between the transformed normal
variates,Y1, . . . ,Y5. TheGaussian copulamultivariate distri-
bution is parameterized by both themarginal beta parameters
in Table 6 and the correlation matrix in Table 9. These deter-
mine the experts’s Gaussian copula prior distribution. The
software produces a file containing the WinBUGS model
(Spiegelhalter et al. 2007) that uses theGaussian copula prior
distribution. This is given at the end of the Appendix.

To examine the assessed prior distributions, we compute
the conditional medians from each of the two encoded prior
distributions and compare them to the expert’s assessments in
Table 8. The aim is to check whether the Gaussian copula has
captured the correlation structure of the multinomial proba-
bilities better than the Dirichlet distribution. Table 10 gives
the conditional medians computed from the Dirichlet distrib-
ution, with the encoded hyperparameters in Table 3, together
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Table 10 Conditional medians
as assessed by the expert
(denoted by A), as computed
from the encoded Dirichlet
distribution (denoted by D) and
as computed from the encoded
Gaussian copula prior
distribution (denoted by C)

p1 p2 p3 p4 p5 p6

A 0.349 0.279 0.162 0.084 0.088 0.039

D 0.234 (0.16 %) 0.177 (0.09%) 0.079 (0.06%) 0.116 (0.32%) 0.044 (0.13%)

C 0.278 (0.00 %) 0.166 (0.02 %) 0.082 (0.02 %) 0.093 (0.06 %) 0.038 (0.03 %)

A 0.446 0.163 0.167 0.09 0.092 0.043

D 0.166 (0.01 %) 0.074 (0.18 %) 0.109 (0.18 %) 0.041 (0.05 %)

C 0.168 (0.01 %) 0.087 (0.03 %) 0.094 (0.02 %) 0.043 (0.00 %)

A 0.446 0.198 0.132 0.093 0.089 0.041

D 0.074 (0.20 %) 0.109 (0.22 %) 0.041(0.00 %)

C 0.087 (0.06 %) 0.096 (0.08 %) 0.043 (0.05 %)

A 0.446 0.198 0.147 0.067 0.094 0.048

D 0.103 (0.10 %) 0.039 (0.19 %)

C 0.094 (0.00 %) 0.046 (0.04 %)

The underlined values represent the conditioning set in each row. The discrepancies between the conditional
medians of each prior and the expert’s assessments are given as bracketed percentages

with the corresponding conditional medians computed from
theGaussian copula prior, with the encoded hyperparameters
in Tables 6 and 9. The original conditional medians assessed
by the expert are given again in Table 10 to facilitate the
comparison. For both prior distributions, the discrepancies of
the computed conditional medians from the expert’s assess-
ments are also presented in the same table as percentages of
the assessments.

Comparing the conditional median values with the corre-
sponding expert’s original assessments it can be seen that the
conditional medians computed from the proposed Gaussian
copula prior are much closer to the expert’s assessments than
are those computed from theDirichlet distribution. This illus-
trates the potential advantage fromusing theGaussian copula
prior rather than the Dirichlet prior distribution.

The elicitation process took about an hour to complete.
The expert stressed the importance of the convenient order of
categories when giving conditional assessments, comment-
ing that ordering the categories in a suitable sequence made
it easier for him to think about the conditions.

6 Concluding comments

Our aim in this paper was to propose methods for elicit-
ing expert opinion about the hyperparameters of both the
Dirichlet distribution and the Gaussian copula distribution.
So as to simplify the separate tasks that an assessor must
perform, the elicitation process for a multivariate prior has
been decomposed into a number of processes for eliciting
univariate beta distributions. The hyperparameters of these
beta distributions are estimated from marginal median and
quartile assessments obtained from a field expert. Two novel
methods have been proposed for reconciling the beta mar-

ginal distributions into a multivariate prior distribution. The
first method reconciles the beta distributions as marginals
of the well-known standard conjugate Dirichlet distribution,
giving a prior distribution that is easily applied in practice.

In the second method, instead of assuming a Dirichlet
prior, we use a Gaussian copula function with beta marginals
to model the joint prior distribution of multinomial proba-
bilities. The proposed Gaussian copula prior assumes that
the dependence structure between the transformed probabil-
ities can be represented by amultivariate normal distribution,
where the marginal prior distribution of each of them is
still expressed as a beta distribution. This requires further
conditional quartile assessments to describe the correlation
structure between these probabilities. The monotonicity of
the Gaussian copula transformation allows conditional quar-
tiles of the multinomial probabilities to be transformed into
normal quartiles. The latter are used to obtain product-
moment correlations for normal variates. This powerful
technique of transforming quartiles avoids the difficulties
encountered when transforming product-moment correla-
tions. Structural assessments of the conditional quartiles are
used to ensure that the encoded correlationmatrix is positive-
definite.Although the encodingof aGaussian copula requires
more assessments than the Dirichlet distribution, it gives
a more flexible multivariate prior distribution. A practical
example where the methods are used was given and the two
encoded prior distributions compared.

The two methods have been implemented in a single user-
friendly software package that is freely available at http://
statistics.open.ac.uk/elicitation. The user has the option of
eliciting either of the two priors or both of them simulta-
neously. For the Dirichlet prior distribution, the available
software outputs the encoded hyperparameter vector a∗. The
expectations and variances of each pi are also given. For the
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Gaussian Copula prior, the output includes the encoded pairs
of beta parameters α#

i and β#
i (i = 1, . . . , k − 1), together

with the encoded correlation matrix R∗.
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Appendix

Proof of Lemma 1

By definition, m∗
1,0 = m#

1,0. From the normal distribution of
yk−1, for i = 2, . . . , k − 1, we have

E(Yi ) = E(Yi |Y1 = E(Y1), . . . ,Yi−1 = E(Yi−1)).

Replacing the expected value by the median function M(.),
using equation (12), we get

M

{
Φ−1[Gi (Zi )]

}
= M

{
Φ−1[Gi (Zi )]|Z1

= m#
1,0, . . . , Zi−1 = m#

i−1,0

}
. (14)

The monotonicity of the CDFs Φ(.) and Gi (.) in (14), using
(9) and (10), gives

m#
i,0 =

M

(
pi |p1 = m#

1,0, . . . , pi−1 = m#
i−1,0

∏i−2
j=1

(
1 − m#

j,0

))

∏i−1
j=1

(
1 − m#

j,0

) .

(15)

Then, the statement of Lemma 1 follows from (15) by induc-
tion, for any i = 2, . . . , k−1. Moreover, under the unit-sum
constraint,m∗

k,0 = 1−∑k−1
i=1 m

∗
i,0 = ∏k−1

j=1(1−m#
j,0). Since,

by definition, m#
k,0 = 1, Lemma 1 is also valid for i = k.

Some definitions and notation

For i = 1, . . . , k − 2, and j = i + 1, . . . , k − 1, let
m#

i,i = (m∗
i,0 + η∗

i )/(1 − ∑i−1
j=1m

∗
j,0), and put m j,i =

E(Y j |Z1 = m#
1,0, . . . , Zi−1 = m#

i−1,0, Zi = m#
i,i ), i.e.

m j,i = E(Y j |p1 = m∗
1,0, . . . , pi−1 = m∗

i−1,0, pi = m∗
i,0 +

η∗
i ). Then

m j,i = Φ−1[G j (m
#
j,i )], (16)

where m#
j,i is defined as the median of (Z j |Z1 = m#

1,0, . . . ,

Zi−1 = m#
i−1,0, Zi = m#

i,i ). Similarly, for i = 1, . . . , k − 1,

let mi,0 = Φ−1[Gi (m#
i,0)]. Since m#

i,0 is the median of the
CDFGi (.),mi,0 = 0 (i = 1, . . . , k−1). For i = 1, . . . , k−2,
define ηi by letting Yi = mi,0 + ηi = ηi when Zi = m#

i,i ,
i.e. when pi = m∗

i,0 + η∗
i . Then

m j,i = E(Y j |Y1 = 0, . . . ,Yi−1 = 0,Yi = ηi ),

for j = i + 1, . . . , k − 1, (17)

and

ηi = Φ−1

[
Gi

(
m∗

i,0 + η∗
i

1 −∑i−1
j=1m

∗
j,0

)]

= Φ−1[Gi (m
#
i,0 + η#i )], (18)

where η#i = η∗
i /(1 −∑i−1

j=1m
∗
j,0).

Moreover, define the conditional variance Vj,i =
Var(Y j |Y1 = 0, . . . ,Yi = 0), so, using the relationship
between the variance of the normal distribution and its quar-
tiles, we get, for j = 2, . . . , k − 1,

Vj, j−1 = [
(Uj − L j )/1.349

]2
, (19)

where

Uj = Φ−1[G j (U
#
j )
]
, L j = Φ−1[G j (L

#
j )
]
.

Proof of Lemma 2

Since m∗
k,i is the conditional median of pk given that

p1 = m∗
1,0, . . . , pi−1 = m∗

i−1,0, pi = m∗
i,0 + η∗

i , pi+1 =
m∗

i+1,i , . . . , pk−1 = m∗
k−1,i , then, under the unit-sum con-

straint on p, we have

m∗
k,i = 1 −

i∑
j=1

m∗
j,0 − η∗

i −
k−1∑
j=i+1

m∗
j,i . (20)

This proves the first statement of Lemma 2.
Using the conditional expectation of the multivariate nor-

mal distribution, for i = 1, . . . , k−2 and j = i+1, . . . , k−1,

E[Y j |Y1 = 0, . . . ,Yi−1 = 0,

Yi = ηi ] = E[Y j |Y1 = 0, . . . ,Yi−1 = 0,Yi = ηi ,

Yi+1 = E(Yi+1|Y1 = 0, . . . ,Yi−1 = 0,

Yi = ηi ), . . . , Y j−1 = E(Y j−1|Y1 = 0, . . . ,

Yi−1 = 0,Yi = ηi )],
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then, from Eq. (17), replacing the expected values by the
median function, M(.), we get

M(Y j |Y1 = 0, . . . ,Yi−1 = 0,Yi = ηi )

= M(Y j |Y1 = 0, . . . ,Yi−1 = 0,Yi = ηi ,

Yi+1 = mi+1,i , . . . ,Y j−1 = m j−1,i ),

Hence

M
{
Φ−1[G j (Z j )]|Z1 = m#

1,0, . . . ,

Zi−1 = m#
i−1,0, Zi = m#

i,i

}

= M

{
Φ−1

[
G j

(
p j

1 −∑ j−2
r=1 pr

)]
|p1 = m∗

1,0, . . . ,

pi−1 = m∗
i−1,0, pi = m∗

i,0 + η∗
i ,

pi+1 = m∗
i+1,i , . . . , p j−1 = m∗

j−1,i },

which, utilizing monotonicity, gives

m#
j,i = m∗

j,i

1 −∑i
r=1 m

∗
r,0 − η∗

i −∑ j−1
r=i+1 m

∗
r,i

,

for j = i + 1, . . . , k − 1. (21)

From (20), statement (21) is also valid for j = k. This coin-
cides with the definition of Zk = 1, and completes the proof
of the second statement of Lemma 2.

Encoding the correlation matrix Ri (i = 2, . . . , k − 1)

Let Ri be partitioned as follows

Ri =
[
Ri−1 Ri−1ri
r′
iRi−1 σ 2

i

]
, (22)

whereRi−1ri = Cov(yi−1,Yi ), andσ 2
i = Var(Yi ).Although

the Gaussian copula function imposes the constraint that
Var(Yi ) = 1, we will find another estimate for σ 2

i using the
conditional variance ofYi elicited in (19). The reason for that,
as will be shown later, is to follow the approach of Kadane
et al. (1980), which will ensure the positive-definiteness of
thematrixRi . Inwhat follows,we use the conditionalmedian
assessments to estimate ri .

Using the partition in (22), we have

E(Yi |yi−1) = y′
i−1ri , (23)

since E(y) = 0. Moreover, for j = 1, . . . , i − 1, taking
the conditional expectation of both sides of (23), given that
y j = yoj , where y

o′
j = (m1,0, . . . ,m j−1,0,m j,0 + η j ), gives

E
[
E(Yi |yi−1)|y j = yoj

]
= E(y′

i−1|y j = yoj ) ri , (24)

i.e.

E(Yi |y j = yoj ) = (yo
′
j , E(Y j+1|y j ), . . . , E(Yi−1|y j )) ri .

(25)

From (17) and (25), and since m j,0 = 0 ( j = 1, . . . , k − 1),
we get

mi, j = (0, . . . , 0, η j ,m j+1, j , . . . ,mi−1, j ) ri .

This holds for j = 1, . . . , i −1, so we have a system of i −1
equations of the form

ui = Qi−1ri , (26)

where u′
i = (mi,1, . . . ,mi,i−1) and

Qi−1 =

⎡
⎢⎢⎢⎢⎣

η1 m2,1 · · · mi−1,1

0 η2
. . .

...
... 0

. . . mi−1,i−2

0 · · · 0 ηi−1

⎤
⎥⎥⎥⎥⎦

.

Provided that η j �= 0 ( j = 1, . . . , i − 1), the upper diagonal
matrix Qi−1 is non-singular, and hence ri = Q−1

i−1ui . The
existence of this solution for ri is guaranteed by choosing
a non-zero value for η∗

j ( j = 1, . . . , i − 1) when eliciting
conditional medians in Sect. 3.2.3. It can be seen from the
relationship in (18) that η j = 0 if and only if η∗

j = 0 ( j =
1, . . . , i − 1).

Since Var(Yi |yi−1) = σ 2
i − r′

iRi−1ri , we can use the
assessed conditional variance given by Vi,i−1 in (19) to esti-
mate the unconditional variance as σ 2

i = Vi,i−1 + r′
iRi−1ri .

Then, using theSchurr complement, thematrixRi is positive-
definite if and only if σ 2

i −r′
iRi−1ri > 0, which is guaranteed

from (19), since Vi,i−1 > 0.

The WinBUGS model

The following is the WinBUGS model for the example in
Sect. 5.
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Model {
# Priors

for (i in 1:5){mean[i] <- 0}
y[1:5] ∼ dmnorm(mean[], PREC[,])
a[1] <- 5.353; a[2] <- 3.906; a[3] <- 6.819; a[4] <- 7.838;
a[5] <- 4.531; b[1] <- 6.577; b[2] <- 6.934; b[3] <- 9.607;
b[4] <- 13.344; b[5] <- 2.227
PREC[1:5,1:5] <- inverse(R[,])
C <- 100000; zero <- 0; zero ∼ dpois(phi) # zeros-trick
prod[1] <- 1
for (j in 1:5){
z[j] ∼ dbeta(a[j],b[j]); p[j] <- z[j]*prod[j]
prod[j+1] <- prod[j]*(1-z[j])
log.beta[j] <- -loggam(a[j]+b[j])+loggam(a[j])+loggam(b[j])

-((a[j]-1)*log(z[j]))-((b[j]-1)*log(1-z[j]))
ss[j] <- pow(y[j],2)*(PREC[j,j]-1)
for (i in 1:5){st[j,i] <- step(j-i-0.5)*y[j]*y[i]*PREC[j,i]}

}
p[6] <- prod[6]
phi <- sum(log.beta[1:5])-0.5*logdet(R[,])+0.5*sum(ss[1:5])

+sum(st[1:5,1:5])+C
# Liklihood

x[1:6] ∼ dmulti(p[], N) # N should equal x[1] + ... + x[6]
}
# Data should appear here as x[1] ... x[6]
# Prior Data

list( R = structure( .Data=c(
1.000, -0.742, -0.416, -0.386, -0.079,

-0.742, 1.000, 0.145, 0.031, 0.099,
-0.416, 0.145, 1.000, -0.296, 0.076,
-0.386, 0.031, -0.296, 1.000, 0.145,
-0.079, 0.099, 0.076, 0.145, 1.000), .Dim=c(5,5)))

References

Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman
and Hall, London (1986)

Albert, I., Donnet, S., Guihenneuc-Jouyaux, C., Low-Choy, S.,
Mengersen, K., Rousseau, J.: Combining expert opinions in prior
elicitation. Bayesian Anal. 7, 503–532 (2012)

Bunn, D.W.: Estimation of a Dirichlet prior distribution. Omega 6, 371–
373 (1978)

Chaloner, K., Duncan, G.T.: Some properties of the Dirichlet-
multinomial distribution and its use in prior elicitation. Commun.
Stat.-Theory. Methods 16, 511–523 (1987)

Chamberlin, J.R., Featherston, F.: Selecting a voting system. J. Polit.
48, 347–369 (1986)

Clemen, R.C., Reilly, T.: Correlations and copulas for decision and risk
analysis. Manag. Sci. 45, 208–224 (1999)

Conn, P.B., McClintock, B.T., Cameron, M.F., Johnson, D., Moreland,
E.E., Boveng, P.L.: Accommodating species identification errors
in transect surveys. Ecology 94, 26072618 (2013)

Connor, R.J., Mosimann, J.E.: Concepts of independence for propor-
tionswith a generalization of theDirichlet distribution. J. Am. Stat.
Assoc. 64, 194–206 (1969)

Cook, L., Cameron, R., Dodd, M., McConway, K., Worthington, J.,
Skelton, P., Anton, C., Bossdor, O., Baur, B., Schilthuizen, M.,
Fontaine, B., Sattmann, H., Bertorelle, G., Correia, M., Oliveira,
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