1,539 research outputs found

    The UBO-TSUFD tsunami inundation model: validation and application to a tsunami case study focused on the city of Catania, Italy

    Get PDF
    Abstract. Nowadays numerical models are a powerful tool in tsunami research since they can be used (i) to reconstruct modern and historical events, (ii) to cast new light on tsunami sources by inverting tsunami data and observations, (iii) to build scenarios in the frame of tsunami mitigation plans, and (iv) to produce forecasts of tsunami impact and inundation in systems of early warning. In parallel with the general recognition of the importance of numerical tsunami simulations, the demand has grown for reliable tsunami codes, validated through tests agreed upon by the tsunami community. This paper presents the tsunami code UBO-TSUFD that has been developed at the University of Bologna, Italy, and that solves the non-linear shallow water (NSW) equations in a Cartesian frame, with inclusion of bottom friction and exclusion of the Coriolis force, by means of a leapfrog (LF) finite-difference scheme on a staggered grid and that accounts for moving boundaries to compute sea inundation and withdrawal at the coast. Results of UBO-TSUFD applied to four classical benchmark problems are shown: two benchmarks are based on analytical solutions, one on a plane wave propagating on a flat channel with a constant slope beach; and one on a laboratory experiment. The code is proven to perform very satisfactorily since it reproduces quite well the benchmark theoretical and experimental data. Further, the code is applied to a realistic tsunami case: a scenario of a tsunami threatening the coasts of eastern Sicily, Italy, is defined and discussed based on the historical tsunami of 11 January 1693, i.e. one of the most severe events in the Italian history

    The UBO-TSUFD tsunami inundation model: validation and application to a tsunami case study focused on the city of Catania, Italy

    Get PDF
    Nowadays numerical models are a powerful tool in tsunami research since they can be used (i) to reconstruct modern and historical events, (ii) to cast new light on tsunami sources by inverting tsunami data and observations, (iii) to build scenarios in the frame of tsunami mitigation plans, and (iv) to produce forecasts of tsunami impact and inundation in systems of early warning. In parallel with the general recognition of the importance of numerical tsunami simulations, the demand has grown for reliable tsunami codes, validated through tests agreed upon by the tsunami community. This paper presents the tsunami code UBO-TSUFD that has been developed at the University of Bologna, Italy, and that solves the non-linear shallow water (NSW) equations in a Cartesian frame, with inclusion of bottom friction and exclusion of the Coriolis force, by means of a leapfrog (LF) finite-difference scheme on a staggered grid and that accounts for moving boundaries to compute sea inundation and withdrawal at the coast. Results of UBO-TSUFD applied to four classical benchmark problems are shown: two benchmarks are based on analytical solutions, one on a plane wave propagating on a flat channel with a constant slope beach; and one on a laboratory experiment. The code is proven to perform very satisfactorily since it reproduces quite well the benchmark theoretical and experimental data. Further, the code is applied to a realistic tsunami case: a scenario of a tsunami threatening the coasts of eastern Sicily, Italy, is defined and discussed based on the historical tsunami of 11 January 1693, i.e. one of the most severe events in the Italian history

    Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA)

    Get PDF
    Eastern Sicily is one of the coastal areas most exposed to earthquakes and tsunamis in Italy. The city of Catania that developed between the eastern base of Etna volcano and the Ionian Sea is, together with the neighbour coastal belt, under the strong menace of tsunamis. This paper addresses the estimation of the tsunami hazard for the city of Catania by using the technique of the Worst-case Credible Tsunami Scenario Analysis (WCTSA) and is focused on a target area including the Catania harbour and the beach called La Plaia where many human activities develop and many important structures are present. The aim of the work is to provide a detailed tsunami hazard analysis, firstly by building scenarios that are proposed on the basis of tectonic considerations and of the largest historical events that hit the city in the past, and then by combining all the information deriving from single scenarios into a unique aggregated scenario that can be viewed as the <i>worst virtual scenario</i>. Scenarios have been calculated by means of numerical simulations on computational grids of different resolutions, passing from 3 km on a regional scale to 40 m in the target area. La Plaia beach results to be the area most exposed to tsunami inundation, with inland penetration up to hundreds of meters. The harbour turns out to be more exposed to tsunami waves with low frequencies: in particular, it is found that the major contribution to the hazard in the harbour is due to a tsunami from a remote source, which propagates with much longer periods than tsunamis from local sources. This work has been performed in the framework of the EU-funded project SCHEMA

    Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA)

    Get PDF
    Abstract. Eastern Sicily is one of the coastal areas most exposed to earthquakes and tsunamis in Italy. The city of Catania that developed between the eastern base of Etna volcano and the Ionian Sea is, together with the neighbour coastal belt, under the strong menace of tsunamis. This paper addresses the estimation of the tsunami hazard for the city of Catania by using the technique of the Worst-case Credible Tsunami Scenario Analysis (WCTSA) and is focused on a target area including the Catania harbour and the beach called La Plaia where many human activities develop and many important structures are present. The aim of the work is to provide a detailed tsunami hazard analysis, firstly by building scenarios that are proposed on the basis of tectonic considerations and of the largest historical events that hit the city in the past, and then by combining all the information deriving from single scenarios into a unique aggregated scenario that can be viewed as the worst virtual scenario. Scenarios have been calculated by means of numerical simulations on computational grids of different resolutions, passing from 3 km on a regional scale to 40 m in the target area. La Plaia beach results to be the area most exposed to tsunami inundation, with inland penetration up to hundreds of meters. The harbour turns out to be more exposed to tsunami waves with low frequencies: in particular, it is found that the major contribution to the hazard in the harbour is due to a tsunami from a remote source, which propagates with much longer periods than tsunamis from local sources. This work has been performed in the framework of the EU-funded project SCHEMA

    The application of a stockpile stochastic model into long-term open pit mine production scheduling to improve the feed grade for the processing plant

    Get PDF
    This paper presents a chance-constrained integer programming approach based on the linear method to solve the long-term open pit mine production scheduling problem. Specifically, a single stockpile has been addressed for storing excess low-grade material based on the availability of processing capacity and for possible future processing. The proposed scheduling model maximizes the project NPV while respecting a series of physical and economic constraints. Differently from common practice, where deterministic models are used to calculate the average grade for material in the stockpiles, in this work a stochastic approach was performed, starting from the time of planning before the stockpile realization. By performing a probability analysis on two case studies (on iron and gold deposits), it was proven that the stockpile attributes can be treated as normally distributed random variables. Afterwards, the stochastic programming model was formulated in an open pit gold mine in order to determine the optimum amount of ore dispatched from different bench levels in the open pit and at the same time a low-grade stockpile to the mill. The chance-constrained programming was finally applied to obtain the equivalent deterministic solution of the primary model. The obtained results have shown a better feed grade for the processing plant with a higher NPV and probability of grade blending constraint satisfaction, with respect to using the traditional stockpile deterministic model.

    The UBO-TSUFD tsunami inundation model: validation and application to a tsunami case study focused on the city of Catania, Italy

    Get PDF
    Nowadays numerical models are a powerful tool in tsunami research since they can be used (i) to reconstruct modern and historical events, (ii) to cast new light on tsunami sources by inverting tsunami data and observations, (iii) to build scenarios in the frame of tsunami mitigation plans, and (iv) to produce forecasts of tsunami impact and inundation in systems of early warning. In parallel with the general recognition of the importance of numerical tsunami simulations, the demand has grown for reliable tsunami codes, validated through tests agreed upon by the tsunami community. This paper presents the tsunami code UBO-TSUFD that has been developed at the University of Bologna, Italy, and that solves the non-linear shallow water (NSW) equations in a Cartesian frame, with inclusion of bottom friction and exclusion of the Coriolis force, by means of a leapfrog (LF) finite-difference scheme on a staggered grid and that accounts for moving boundaries to compute sea inundation and withdrawal at the coast. Results of UBO-TSUFD applied to four classical benchmark problems are shown: two benchmarks are based on analytical solutions, one on a plane wave propagating on a flat channel with a constant slope beach; and one on a laboratory experiment. The code is proven to perform very satisfactorily since it reproduces quite well the benchmark theoretical and experimental data. Further, the code is applied to a realistic tsunami case: a scenario of a tsunami threatening the coasts of eastern Sicily, Italy, is defined and discussed based on the historical tsunami of 11 January 1693, i.e. one of the most severe events in the Italian history
    • …
    corecore