19 research outputs found

    COMBREX: a project to accelerate the functional annotation of prokaryotic genomes

    Get PDF
    COMBREX (http://combrex.bu.edu) is a project to increase the speed of the functional annotation of new bacterial and archaeal genomes. It consists of a database of functional predictions produced by computational biologists and a mechanism for experimental biochemists to bid for the validation of those predictions. Small grants are available to support successful bids.National Institute of General Medical Sciences (U.S.) (Go grant 1RC2GM092602-01

    Bi-allelic mutations in uncoordinated mutant number-45 myosin chaperone B are a cause for congenital myopathy

    Get PDF
    Congenital myopathies (CM) form a genetically heterogeneous group of disorders characterized by perinatal muscle weakness. Here, we report an 11-year old male offspring of consanguineous parents of Lebanese origin. He presented with proximal weakness including Gower's sign, and skeletal muscle biopsy revealed myopathic changes with core-like structures. Whole exome sequencing of this index patient lead to the discovery of a novel genetically defined CM subtype based on bi-allelic mutations in the uncoordinated mutant number-45 myosin chaperone B (UNC45B) NM_173167:c.2261G > A, p.Arg754Gln. The mutation is conserved in evolution and co-segregates within the pedigree with the phenotype, and located in the myosin binding armadillo repeat domain 3 (ARM3), and has a CADD Score of 35. On a multimeric level, UNC45B aggregates to a chain which serves as an assembly line and functions as a template defining the geometry, regularity, and periodicity of myosin arranged into muscle thick filaments. Our discovery is in line with the previously described myopathological phenotypes in C. elegans and in vertebrate mutants and knockdown-models. In conclusion, we here report for the first time a patient with an UNC45B mutation causing a novel genetically defined congenital myopathy disease entity

    COMBREX: a project to accelerate the functional annotation of prokaryotic genomes

    Get PDF
    COMBREX (http://combrex.bu.edu) is a project to increase the speed of the functional annotation of new bacterial and archaeal genomes. It consists of a database of functional predictions produced by computational biologists and a mechanism for experimental biochemists to bid for the validation of those predictions. Small grants are available to support successful bids.National Institute of General Medical Sciences (U.S.) (Go grant 1RC2GM092602-01

    Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation

    Get PDF
    Background: Recent research supports that aggregation of islet amyloid polypeptide (IAPP) leads to cell death and this makes islet amyloid a plausible cause for the reduction of beta cell mass, demonstrated in patients with type 2 diabetes. IAPP is produced by the beta cells as a prohormone, and proIAPP is processed into IAPP by the prohormone convertases PC1/3 and PC2 in the secretory granules. Little is known about the pathogenesis for islet amyloid and which intracellular mechanisms are involved in amyloidogenesis and induction of cell death. Methodology/Principal Findings: We have established expression of human proIAPP (hproIAPP), human IAPP (hIAPP) and the non-amyloidogenic mouse IAPP (mIAPP) in Drosophila melanogaster, and compared survival of flies with the expression driven to different cell populations. Only flies expressing hproIAPP in neurons driven by the Gal4 driver elavC(155,Gal4) showed a reduction in lifespan whereas neither expression of hIAPP or mIAPP influenced survival. Both hIAPP and hproIAPP expression caused formation of aggregates in CNS and fat body region, and these aggregates were both stained by the dyes Congo red and pFTAA, both known to detect amyloid. Also, the morphology of the highly organized protein granules that developed in the fat body of the head in hIAPP and hproIAPP expressing flies was characterized, and determined to consist of 15.8 nm thick pentagonal rod-like structures. Conclusions/Significance: These findings point to a potential for Drosophila melanogaster to serve as a model system for studies of hproIAPP and hIAPP expression with subsequent aggregation and developed pathology.Original Publication: Sebastian Schultz, Peter Nilsson and Gunilla Torstensdotter Westermark, Drosophila Melanogaster as a Model System for Studies of Islet Amyloid Polypeptide Aggregation, 2011, PLoS ONE, (6), 6. http://dx.doi.org/10.1371/journal.pone.0020221 Copyright: Public Library of Science (PLoS) http://www.plos.org/</p

    Pathogenic Variants in the Myosin Chaperone UNC-45B Cause Progressive Myopathy with Eccentric Cores

    Get PDF
    The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization

    Pathogenic Variants in the Myosin Chaperone UNC-45B Cause Progressive Myopathy with Eccentric Cores.

    Get PDF
    The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization

    Numerical analysis of the quenching process in the tubular furnace with cold cooling chamber

    No full text
    W artykule przedstawiono zagadnienie wymiany ciepła pomiędzy stalowym wsadem poddanym uprzednio obróbce cieplno-chemicznej (nawęglanie próżniowe) a przepływającym gazem pod wysokim ciśnieniem. Problem naukowy rozwiązano wykorzystując stworzony w środowisku Delphi, specjalnie dla tego typu zagadnień, zewnętrzny program nadrzędny, umożliwiający połączenie oprogramowania opartego na metodzie objętości skończonej - ANSYS CFX 12.0 i metodzie elementów skończonych - ANSYS 12.0. Do programu zaimplementowane zostały dwa modele: przepływowy i termiczny. Stworzony program pozwala na analizę tempa chłodzenia w każdym punkcie objętości i optymalizację procesu chłodzenia z intensywnie i turbulentnie przepływającym gazem. Dla poprawnego zdefiniowania i modelowania zjawiska wymiany ciepła pomiędzy wsadem a medium chłodzącym stworzono bazę danych materiałowych, obejmującą wielkości fizyczne pozwalające stworzyć model numeryczny uwzględniający przemiany fazowe z tzw. ciepłem utajonym oraz wpływ szybkości chłodzenia na zmiany zachodzące w strukturze detalu. Przy tworzeniu baz materiałowych posłużono się programem JMatPro.The following work presents the issue of heat transfer between the steel charge after vacuum carburizing process and gas which intensively flows through. The external managing program has been created in Delphi environment to solve the scientific research problem, which connect the Finite Volume Method - ANSYS CFX 12.0 with Finite Element Method - ANSYS 12.0. To the program there were implemented two models: flow and thermal. Created program allows to analyze cooling rate at each point of the volume and optimize the cooling process with gas intensively and turbulently flowing through. For the correct definition and modeling of the phenomenon of the heat transfer between the steel charge and cooling gas, the database of material properties was created, which includes physical quantities that allow to create a numerical model taking into account the so-called phase transitions with latent heat and the influence of the cooling rate to changes in the structure of the detail. Thanks to JMatPro4 program, the application of different material properties database of material properties could be applied
    corecore