308 research outputs found
Absinthin, an agonist of the bitter taste receptor hTAS2R46, uncovers an ER-to-mitochondria Ca2–shuttling event
Type 2 taste receptors (TAS2R) are G protein-coupled receptors first described in the gustatory system, but have also been shown to have extra-oral localizations, including airway smooth muscle (ASM) cells, in which TAS2R have been reported to induce relaxation. TAS2R46 is an unexplored subtype that responds to its highly specific agonist absinthin. Here, we first demonstrate that, unlike other bitter-taste receptor agonists, absinthin alone (1 μM) in ASM cells does not induce Ca2+ signals, but reduces histamine-induced cytosolic Ca2+ increases. To investigate this mechanism, we introduced into ASM cells aequorin-based Ca2+ probes targeted to the cytosol, sub-plasma membrane domain, or the mitochondrial matrix. We show that absinthin reduces cytosolic histamine-induced Ca2+-rises and simultaneously increases Ca2+-influx into mitochondria. We found that this effect is inhibited by the potent human TAS2R46 (hTAS2R46) antagonist 3β-hydroxydihydrocostunolide and is no longer evident in hTAS2R46-silenced ASM cells, indicating that it is hTAS2R46-dependent. Furthermore, these changes were sensitive to the mitochondrial uncoupler carbonyl cyanide p-(trifluoromethoxy)phenyl-hydrazone (FCCP); the mitochondrial calcium uniporter inhibitor KB-R7943 (carbamimidothioic-acid); the cytoskeletal disrupter latrunculin; and an inhibitor of the exchange protein directly activated by cAMP (EPAC), ESI-09. Similarly, the β2 agonist salbutamol also could induce Ca2+ shuttling from cytoplasm to mitochondria, suggesting that this new mechanism might be generalizable. Moreover, forskolin and an EPAC activator mimicked this effect in HeLa cells. Our findings support the hypothesis that plasma membrane receptors can positively regulate mitochondrial Ca2+ uptake, adding a further facet to the ability of cells to encode complex Ca2+ signals
Integrating Biological Advances Into the Clinical Management of Breast Cancer Related Lymphedema
Breast cancer-related lymphedema (BCRL) occurs in a significant number of breast cancer survivors as a consequence of the axillary lymphatics' impairment after therapy (mainly axillary surgery and irradiation). Despite the recent achievements in the clinical management of these patients, BCRL is often diagnosed at its occurrence. In most cases, it remains a progressive and irreversible condition, with dramatic consequences in terms of quality of life and on sanitary costs. There are still no validated pre-surgical strategies to identify individuals that harbor an increased risk of BCRL. However, clinical, therapeutic, and tumor-specific traits are recurrent in these patients. Over the past few years, many studies have unraveled the complexity of the molecular and transcriptional events leading to the lymphatic system ontogenesis. Additionally, molecular insights are coming from the study of the germline alterations involved at variable levels in BCRL models. Regrettably, there is a substantial lack of predictive biomarkers for BCRL, given that our knowledge of its molecular milieu remains extremely puzzled. The purposes of this review were (i) to outline the biology underpinning the ontogenesis of the lymphatic system; (ii) to assess the current state of knowledge of the molecular alterations that can be involved in BCRL pathogenesis and progression; (iii) to discuss the present and short-term future perspectives in biomarker-based patients' risk stratification; and (iv) to provide practical information that can be employed to improve the quality of life of these patients
Liver infection and COVID-19: the electron microscopy proof and revision of the literature
OBJECTIVE: COVID-19, the newly emerging infectious disease, has been associated with acute liver injury, often related to progression to severe pneumonia. The association between moderate-severe liver injury and more severe clinical course of COVID-19 has suggested that liver injury is prevalent in severe than in mild cases of COVID-19, while no difference in liver involvement has been reported between survivors and non-survivors. The spectrum of liver involvement during COVID-19 ranges from an asymptomatic elevation of liver enzymes to severe hepatitis. Only rarely, cases with acute hepatitis have been reported in the absence of respiratory symptoms. Both epithelial and biliary cells possess the angiotensin-converting enzyme-2 receptors that SARS-CoV-2 uses to be internalized. However, to our knowledge, no ultrastructural identification of the virus in liver cells has been reported to date. Here we provide evidence of SARS-CoV-2 in the liver of two patients, a 34-year-old woman and a 60-year-old man with COVID-19.PATIENTS AND METHODS: We investigated two patients with COVID-19 showing several virions within cytoplasmic vacuoles of cholangiocytes and in endothelial cells of hepatic sinusoids. In both patients, we performed histological and ultrastructural examinations by liver biopsy. After two months, both patients were free of symptoms, and the SARS-CoV-2 infection had resolved.RESULTS: Liver biopsy histological and ultrastructural examination showed liver injury and several virions within cytoplasmic vacuoles of cholangiocytes and in endothelial cells of hepatic sinusoids.CONCLUSIONS: Although most studies in COVID-19 have been focused on the lungs, recently, cholestatic liver pathology has been introduced in the spectrum of pathological changes related to COVID-19. To the best of our knowledge, those presented in this paper are the first images of hepatic SARS-CoV-2 infected liver cells. Our findings suggest a role for cholangiocytes and biliary structures in the COVID-19
CDKN2A Determines Mesothelioma Cell Fate to EZH2 Inhibition
Malignant pleural mesothelioma is an aggressive cancer, heterogeneous in its presentation and behaviour. Despite an increasing knowledge about molecular markers and their diagnostic and prognostic value, they are not used as much as they might be for treatment allocation. It has been recently reported that mesothelioma cells that lack BAP1 (BRCA1 Associated Protein) are sensitive to inhibition of the EZH2 (Enhancer of Zeste Homolog 2) histone methyltransferase. Since we observed strong H3K27me3 (histone H3 lysine 27 trimetylation) immunoreactivity in BAP1 wild-type mesothelioma biopsies, we decided to characterize in vitro the response/resistance of BAP1 wild-type mesothelioma cells to the EZH2 selective inhibitor, EPZ-6438. Here we demonstrate that BAP1 wild-type mesothelioma cells were rendered sensitive to EPZ-6438 upon SIRT1 (Sirtuin 1) silencing/inhibition or when cultured as multicellular spheroids, in which SIRT1 expression was lower compared to cells grown in monolayers. Notably, treatment of spheroids with EPZ-6438 abolished H3K27me3 and induced the expression of CDKN2A (Cyclin-Dependent Kinase Inhibitor 2A), causing cell growth arrest. EPZ-6438 treatment also resulted in a rapid and sustained induction of the genes encoding HIF2α (Hypoxia Inducible Factor 2α), TG2 (Transglutaminase 2) and IL-6 (Interleukin 6). Loss of CDKN2 is a common event in mesothelioma. CDKN2A silencing in combination with EPZ-6438 treatment induced apoptotic death in mesothelioma spheroids. In a CDKN2A wild-type setting apoptosis was induced by combining EPZ-6438 with 1-155, a TG2 selective and irreversible inhibitor. In conclusion, our data suggests that the expression of CDKN2A predicts cell fate in response to EZH2 inhibition and could potentially stratify tumors likely to undergo apoptosis
Phenotypic Characteristics of the Tumour Microenvironment in Primary and Secondary Hepatocellular Carcinoma
(1) Background: The intra-tumoural heterogeneity (ITH) of hepatocellular carcinoma (HCC) and its microenvironment (TME) across primary and secondary disease is poorly characterised. (2) Methods: Intra-tumoural (IT) and peri-tumoural (PT) staining of matched primary and secondary samples was conducted to evaluate the distribution of CD4+/FOXP3+ and CD8+/PD1+ T-cells. Samples underwent PD-L1/2 immunostaining, tumour mutational burden (TMB) evaluation, and high-resolution T-cell receptor (TCR) sequencing to derive T-cell clonality and targeted transcriptomics. (3) Results: We analysed 24 samples from matched primary (n = 11) and secondary (n = 13; 5 synchronous, 6 metachronous) deposits, 11 being extrahepatic (84.6%). IT CD8+ density was lower than PT in both primary (p = 0.005) and secondary deposits (p = 0.01), consistent with immune exclusion. PD-L1+ tumours displayed higher IT and PT CD8+/PD1+ cell density compared to PD-L1- (p < 0.05), and primary IT infiltrate was enriched in CD4+/FOXP3+ cells, compared to PT regions (p = 0.004). TCR-sequencing demonstrated enrichment of the top T-cell clonotype in secondary versus primary HCC (p = 0.02), without differences in overall productive clonality (p = 0.35). TMB was similar across primary versus secondary HCC (p = 0.95). While directed gene set analysis demonstrated the uniformity of transcriptional signatures of individual immune cell types, secondary deposits demonstrated higher COLEC12 (p = 0.004), CCL26 (p = 0.02), CD1E (p = 0.02) and CD36 (p = 0.03) expression with downregulation of CXCL1 (p = 0.03), suggesting differential regulation of innate immunity. (4) Conclusion: Immune exclusion is a defining feature of the HCC TME. Despite evidence of homogeneity in somatic TMB, secondary HCC is characterised by the expansion of a distinct T-cell clonotype and differential regulation of innate immune pathways
- …