118 research outputs found
Spin anisotropy effects in dimer single molecule magnets
We present a model of equal spin dimer single molecule magnets. The
spins within each dimer interact via the Heisenberg and the most general set of
four quadratic anisotropic spin interactions with respective strengths and
, and with the magnetic induction . We solve the model
exactly for , and for antiferromagnetic Heisenberg couplings
(), present curves at low for these cases. Low-
curves for and electron paramagnetic susceptibility
for are also provided. For weak anisotropy
interactions, we employ a perturbative treatment, and show that the Hartree and
extended Hartree approximations lead to reliable analytic results at low
and large for these quantities and for the inelastic neutron scattering
cross-section . Our results are discussed with
regard to existing experiments on Fe dimer
single molecule magnets, and suggest that one of them contains a substantial
amount of single-ion anisotropy, without any sizeable global spin anisotropy.
We urge further experiments of the above types on single crystals of Fe and
on some [Mn] dimers, in order to elucidate the precise values
of the various microscopic interactions.Comment: 30 pages, 25 figures, submitted to Phys. Rev.
Underscreened Kondo effect in S=1 magnetic quantum dots: Exchange, anisotropy and temperature effects
We present a theoretical analysis of the effects of uniaxial magnetic
anisotropy and contact-induced exchange field on the underscreened Kondo effect
in S=1 magnetic quantum dots coupled to ferromagnetic leads. First, by using
the second-order perturbation theory we show that the coupling to
spin-polarized electrode results in an effective exchange field
and an effective magnetic anisotropy . Second, we confirm these
findings by using the numerical renormalization group method, which is employed
to study the dependence of the quantum dot spectral functions, as well as
quantum dot spin, on various parameters of the system. We show that the
underscreened Kondo effect is generally suppressed due to the presence of
effective exchange field and can be restored by tuning the anisotropy constant,
when . The Kondo effect can also be restored by
sweeping an external magnetic field, and the restoration occurs twice in a
single sweep. From the distance between the restored Kondo resonances one can
extract the information about both the exchange field and the effective
anisotropy. Finally, we calculate the temperature dependence of linear
conductance for the parameters where the Kondo effect is restored and show that
the restored Kondo resonances display a universal scaling of Kondo
effect.Comment: 13 pages, 9 figures (version as accepted for publication in Physical
Review B
Molecular switching in iron complexes bridged via tin-cyanides observed by Mössbauer and ESR spectroscopy
The precursor [FeIII(L)Cl] (LH2 N,N'-bis(2'-hydroxy- 3'-X-benzyliden)-1,6-diamino-3-N-hexane) is a high-spin (S 5/2) complex (with X -CH3, -O-CH3). This precursor is combined with the bridging unit [SnIV(CN)4] to yield star-shaped pentanuclear clusters, [(L-X-FeIII)4Sn(CN) 4]Cl4 57Fe-Mössbauer, 119mSn- Mössbauer, and ESR spectroscopy are used to study our samples. For X -CH3 the 57Fe-Mössbauer data show a multiple spin transition between iron(III) in the high-spin and low-spin state. Changing the functional group from X -CH3 to X -O-CH3 turns the switchability off
Single-ion and exchange anisotropy effects and multiferroic behavior in high-symmetry tetramer single molecule magnets
We study single-ion and exchange anisotropy effects in equal-spin
tetramer single molecule magnets exhibiting , , ,
, , or ionic point group symmetry. We first write the
group-invariant quadratic single-ion and symmetric anisotropic exchange
Hamiltonians in the appropriate local coordinates. We then rewrite these local
Hamiltonians in the molecular or laboratory representation, along with the
Dzyaloshinskii-Moriay (DM) and isotropic Heisenberg, biquadratic, and
three-center quartic Hamiltonians. Using our exact, compact forms for the
single-ion spin matrix elements, we evaluate the eigenstate energies
analytically to first order in the microscopic anisotropy interactions,
corresponding to the strong exchange limit, and provide tables of simple
formulas for the energies of the lowest four eigenstate manifolds of
ferromagnetic (FM) and anitiferromagnetic (AFM) tetramers with arbitrary .
For AFM tetramers, we illustrate the first-order level-crossing inductions for
, and obtain a preliminary estimate of the microscopic
parameters in a Ni from a fit to magnetization data.
Accurate analytic expressions for the thermodynamics, electron paramagnetic
resonance absorption and inelastic neutron scattering cross-section are given,
allowing for a determination of three of the microscopic anisotropy
interactions from the second excited state manifold of FM tetramers. We also
predict that tetramers with symmetries and should exhibit both
DM interactions and multiferroic states, and illustrate our predictions for
.Comment: 30 pages, 14 figures, submitted to Phys. Rev.
Magnetic properties of the antiferromagnetic spin-1/2 chain system -TeVO
The magnetic susceptibility and magnetization of high quality single crystal
beta-TeVO4 are reported. We show that this compound, made of weakly coupled
infinite chains of VO5 pyramids sharing corners, behaves as a S = 1/2
one-dimensional Heisenberg antiferromagnet. From magnetic experiments we deduce
the intrachain antiferromagnetic coupling constant J/kB = 21.4 0.2 K.
Below 5 K a series of three phase transitions at 2.26, 3.28 and 4.65 K is
observed.Comment: Accepted for publication in Physical Review
Antisymmetric Magnetic Interactions in Oxo-Bridged Copper(II) Bimetallic Systems
The antisymmetric magnetic interaction is studied using correlated wave-function-based calculations in oxo-bridged copper bimetallic complexes. All of the anisotropic multispin Hamiltonian parameters are extracted using spin-orbit state interaction and effective Hamiltonian theory. It is shown that the methodology is accurate enough to calculate the antisymmetric terms, while the small symmetric anisotropic interactions require more sophisticated calculations. The origin of the antisymmetric anisotropy is analyzed, and the effect of geometrical deformations is addressed.
Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate
Red Guipuzcoana de Ciencia, Tecnologia e Innovacion
OF218/2018
University of Basque Country
GIU 17/13
Basque Government
IT1005-16
IT1291-19
IT1310-19
Junta de Andalucia
FQM-394
Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE)
PGC2018-102052-A-C22
PGC2018-102052-B-C21
MAT2016-75883-C2-1-P
European Union (EU)
ESFIn this work, three isostructural metal-organic frameworks based on frst row transition metal ions
and 2-aminoisonicotinate (2ain) ligands, namely, {[M(μ-2ain)2]·DMF}n [MII=Co (1), Ni (2), Zn (3)], are
evaluated for their sensing capacity of various solvents and metal ions by monitoring the modulation
of their magnetic and photoluminescence properties. The crystal structure consists of an open
diamond-like topological 3D framework that leaves huge voids, which allows crystallizing two-fold
interpenetrated architecture that still retains large porosity. Magnetic measurements performed on 1
reveal the occurrence of feld-induced spin-glass behaviour characterized by a frequency-independent
relaxation. Solvent-exchange experiments lead successfully to the replacement of lattice molecules by
DMSO and MeOH, which, on its part, show dominating SIM behaviour with low blocking temperatures
but substantially high energy barriers for the reversal of the magnetization. Photoluminescence studied
at variable temperature on compound 3 show its capacity to provide bright blue emission under UV
excitation, which proceeds through a ligand-centred charge transfer mechanism as confrmed by timedependent DFT calculations. Turn-of and/or shift of the emission is observed for suspensions of 3 in
diferent solvents and aqueous solutions containing metal ions
Theoretical investigation of the electronic structure of Fe(II) complexes at spin-state transitions
The electronic structure relevant to low spin (LS)high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+(1) (tz=1H-tetrazole), [Fe(bipy)3]2+(2) (bipy=2,2’-bipyridine) and [Fe(terpy)2]2+ (3) (terpy=2,2’:6’,2’’-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT) and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS-HS states (ΔEHL) applying the above methods, and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed both at the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet-triplet and triplet-quintet states are separated along different coordinates, i.e. different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the singlet-quintet transitions in [Fe(terpy)2]2+ cannot be described using a single configuration coordinate
- …