568 research outputs found
Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble
We present the experimental evidence of giant optical anisotropy in single
InAs quantum dots. Polarization-resolved photoluminescence spectroscopy reveals
a linear polarization ratio with huge fluctuations, from one quantum dot to
another, in sign and in magnitude with absolute values up to 82%. Systematic
measurements on hundreds of quantum dots coming from two different laboratories
demonstrate that the giant optical anisotropy is an intrinsic feature of dilute
quantum-dot arrays.Comment: submitted to Applied Physics Letter
Coulomb interactions in single, charged self-assembled quantum dots: radiative lifetime and recombination energy
We present results on the charge dependence of the radiative recombination
lifetime, Tau, and the emission energy of excitons confined to single
self-assembled InGaAs quantum dots. There are significant dot-to-dot
fluctuations in the lifetimes for a particular emission energy. To reach
general conclusions, we present the statistical behavior by analyzing data
recorded on a large number of individual quantum dots. Exciton charge is
controlled with extremely high fidelity through an n-type field effect
structure, providing access to the neutral exciton (X0), the biexciton (2X0)
and the positively (X1+) and negatively (X1-) charged excitons. We find
significant differences in the recombination lifetime of each exciton such
that, on average, Tau(X1-) / Tau(X0) = 1.25, Tau(X1+) / Tau(X0) = 1.58 and
Tau(2X0) / Tau(X0) = 0.65. We attribute the change in lifetime to significant
changes in the single particle hole wave function on charging the dot, an
effect more pronounced on charging X0 with a single hole than with a single
electron. We verify this interpretation by recasting the experimental data on
exciton energies in terms of Coulomb energies. We show directly that the
electron-hole Coulomb energy is charge dependent, reducing in value by 5-10% in
the presence of an additional electron, and that the electron-electron and
hole-hole Coulomb energies are almost equal.Comment: 8 pages, 7 figures, submitted to Phys. Rev.
Observation of Faraday rotation from a single confined spin
Ability to read-out the state of a single confined spin lies at the heart of
solid-state quantum information processing. While all-optical spin measurements
using Faraday rotation has been successfully implemented in ensembles of
semiconductor spins, read-out of a single semiconductor spin has only been
achieved using transport measurements based on spin-charge conversion. Here, we
demonstrate an all-optical dispersive measurement of the spin-state of a single
electron trapped in a semiconductor quantum dot. We obtain information on the
spin state through conditional Faraday rotation of a spectrally detuned optical
field, induced by the polarization- and spin-selective trion (charged quantum
dot) transitions. To assess the sensitivity of the technique, we use an
independent resonant laser for spin-state preparation. An all-optical
dispersive measurement on single spins has the important advantage of
channeling the measurement back-action onto a conjugate observable, thereby
allowing for repetitive or continuous quantum nondemolition (QND) read-out of
the spin-state. We infer from our results that there are of order unity
back-action induced spin-flip Raman scattering events within our measurement
timescale. Therefore, straightforward improvements such as the use of a
solid-immersion lens and higher efficiency detectors would allow for
back-action evading spin measurements, without the need for a cavity
Dressed excitonic states and quantum interference in a three-level quantum dot ladder system
We observe dressed states and quantum interference effects in a strongly
driven three-level quantum dot ladder system. The effect of a strong coupling
field on one dipole transition is measured by a weak probe field on the second
dipole transition using differential reflection. When the coupling energy is
much larger than both the homoge-neous and inhomogeneous linewidths an
Autler-Townes splitting is observed. Striking differences are observed when the
transitions resonant with the strong and weak fields are swapped, particularly
when the coupling energy is nearly equal to the measured linewidth. This result
is attributed to quantum interference: a modest destructive or constructive
interference is observed depending on the pump / probe geometry. The data
demonstrate that coher-ence of both the bi-exciton and the exciton is
maintained in this solid-state system, even under intense illumina-tion, which
is crucial for prospects in quantum information processing and non-linear
optical devices.Comment: 8 pages, 6 figures, submitted to New Journal of Physic
Contrast in transmission spectroscopy of a single quantum dot
We perform transmission spectroscopy on single quantum dots and examine the
effects of a resident carriers spin, the incident laser spot size,
polarization, and power on the experimental contrast. We demonstrate a factor
of 4 improvement in the maximum contrast by using a solid immersion lens to
decrease the spot area. This increase yields a maximum signal to noise ratio of
2000 Hz-1/2, which will allow for MHz detection frequencies. We anticipate that
this improvement will allow further investigation of spectral fluctuation and
open up the feasibility for an all-optical read-out of an electron spin in a
quantum dot
Generation of induced Pluripotent Stem Cells (UNIBSi008-A, UNIBSi008-B, UNIBSi008-C) from an Ataxia-Telangiectasia (AT) patient carrying a novel homozygous deletion in ATM gene.
Abstract Using a Sendai Virus based vector delivering Yamanaka Factors, we generated induced Pluripotent Stem Cells (iPSCs) from peripheral blood mononuclear cells of a patient affected by Ataxia Telangiectasia (AT), caused by a novel homozygous deletion in ATM, spanning exons 5 to 7. Three clones were fully characterized for pluripotency and capability to differentiate. These clones preserved the causative mutation of parental cells and genomic stability over time (>100 passages). Furthermore, in AT derived iPSCs we confirmed the impaired DNA damage response after ionizing radiation. All these data underline potential usefulness of our clones as in vitro AT disease model
Gut-dependent inflammation and alterations of the intestinal microbiota in individuals with perinatal HIV exposure and different HIV serostatus
Objective: HIV-exposed infected (HEI) and uninfected (HEU) children represent the two possible outcomes of maternal HIV infection. Modifications of the intestinal microbiome have been linked to clinical vulnerability in both settings, yet whether HEI and HEU differ in terms of gut impairment and peripheral inflammation/activation is unknown. Design: We performed a cross-sectional, pilot study on fecal and plasma microbiome as well as plasma markers of gut damage, microbial translocation, inflammation and immune activation in HIV-infected and uninfected children born from an HIV-infected mother. Methods: Fecal and plasma microbiome were determined by means of 16S rDNA amplification with subsequent qPCR quantification. Plasma markers were quantified via ELISA. Results: Forty-seven HEI and 33 HEU children were consecutively enrolled. The two groups displayed differences in fecal beta-diversity and relative abundance, yet similar microbiome profiles in plasma as well as comparable gut damage and microbial translocation. In contrast, monocyte activation (sCD14) and systemic inflammation (IL-6) were significantly higher in HEI than HEU. Conclusion: In the setting of perinatal HIV infection, enduring immune activation and inflammation do not appear to be linked to alterations within the gut. Given that markers of activation and inflammation are independent predictors of HIV disease progression, future studies are needed to understand the underlying mechanisms of such processes and elaborate adjuvant therapies to reduce the clinical risk in individuals with perinatal HIV infection
Increased use of high-flow nasal cannulas after the pandemic in bronchiolitis: a more severe disease or a changed physician’s attitude?
After the SARS-CoV-2 pandemic, we noticed a marked increase in high-flow nasal cannula use for bronchiolitis. This study aims to report the percentage of children treated with high-flow nasal cannula (HFNC) in various seasons. The secondary outcomes were admissions for bronchiolitis, virological results, hospital burden, and NICU/PICU need. We conducted a retrospective study in four Italian hospitals, examining the medical records of all infants (< 12 months) hospitalized for bronchiolitis in the last four winter seasons (1 September–31 March 2018–2022). In the 2021–2022 winter season, 66% of admitted children received HFNC versus 23%, 38%, and 35% in the previous 3 years. A total of 876 patients were hospitalized in the study periods. In 2021–2022, 300 infants were hospitalized for bronchiolitis, 22 in 2020–2021, 259 in 2019–2020, and 295 in 2018–2019. The percentage of patients needing intensive care varied from 28.7% to 18%, 22%, and 15% in each of the four considered periods (p < 0.05). Seventy-seven percent of children received oxygen in the 2021–2022 winter; vs 50%, 63%, and 55% (p < 0.01) in the previous 3 years. NIV/CPAP was used in 23%, 9%, 16%, and 12%, respectively. In 2021–2020, 2% of patients were intubated; 0 in 2020–2021, 3% in 2019–2020, and 1% in 2018–2019. Conclusion: This study shows a marked increase in respiratory support and intensive care admissions this last winter. While these severity indexes were all driven by medical choices, more reliable indexes such as intubation rate and length of stay did not change. Therefore, we suggest that there is a more aggressive treatment attitude rather than a more severe disease.What is Known:• COVID-19 pandemic deeply impacted bronchiolitis epidemiology, reducing hospitalizations to onetenth. In the 2021-2022 winter, bronchiolitis resurged to pre-pandemic numbers in Europe.What is New:• Bronchiolitis hospitalization rose much faster in the 2021-2022 winter period, peaking at a higher level. Respiratory supports and high-flow nasal cannula increased significantly compared to the pre-pandemic era
- …