81 research outputs found

    Sensing rotations with multiplane light conversion

    Get PDF
    We report an experiment estimating the three parameters of a general rotation. The scheme uses quantum states attaining the ultimate precision dictated by the quantum Cram\'er-Rao bound. We realize the states experimentally using the orbital angular momentum of light and implement the rotations with a multiplane light conversion setup, which allows one to perform arbitrary unitary transformations on a finite set of spatial modes. The observed performance suggests a range of potential applications in the next generation of rotation sensors.Comment: 8 pages, 4 figures. Comments welcome! arXiv admin note: text overlap with arXiv:2012.0059

    Relational Particle Models. II. Use as toy models for quantum geometrodynamics

    Full text link
    Relational particle models are employed as toy models for the study of the Problem of Time in quantum geometrodynamics. These models' analogue of the thin sandwich is resolved. It is argued that the relative configuration space and shape space of these models are close analogues from various perspectives of superspace and conformal superspace respectively. The geometry of these spaces and quantization thereupon is presented. A quantity that is frozen in the scale invariant relational particle model is demonstrated to be an internal time in a certain portion of the relational particle reformulation of Newtonian mechanics. The semiclassical approach for these models is studied as an emergent time resolution for these models, as are consistent records approaches.Comment: Replaced with published version. Minor changes only; 1 reference correcte

    Measurements in two bases are sufficient for certifying high-dimensional entanglement

    Full text link
    High-dimensional encoding of quantum information provides a promising method of transcending current limitations in quantum communication. One of the central challenges in the pursuit of such an approach is the certification of high-dimensional entanglement. In particular, it is desirable to do so without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental setup, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state.Comment: 11+14 pages, 2+7 figure

    Causal structures and causal boundaries

    Full text link
    We give an up-to-date perspective with a general overview of the theory of causal properties, the derived causal structures, their classification and applications, and the definition and construction of causal boundaries and of causal symmetries, mostly for Lorentzian manifolds but also in more abstract settings.Comment: Final version. To appear in Classical and Quantum Gravit

    Modal beam splitter:Determination of the transversal components of an electromagnetic light field

    Get PDF
    The transversal profile of beams can always be defined as a superposition of orthogonal fields, such as optical eigenmodes. Here, we describe a generic method to separate the individual components in a laser beam and map each mode onto its designated detector with low crosstalk. We demonstrate this with the decomposition into Laguerre-Gaussian beams and introduce a distribution over the integer numbers corresponding to the discrete orbital and radial momentum components of the light field. The method is based on determining an eigenmask filter transforming the incident optical eigenmodes to position eigenmodes enabling the detection of the state of the light field using single detectors while minimizing cross talk with respect to the set of filter masks considered.UK Engineering and Physical Sciences Research Council [EP/J01771X/1]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Amplification of waves from a rotating body

    Get PDF
    In 1971, Zel’dovich predicted that quantum fluctuations and classical waves reflected from a rotating absorbing cylinder will gain energy and be amplified. This concept, which is a key step towards the understanding that black holes may amplify quantum fluctuations, has not been verified experimentally owing to the challenging experimental requirement that the cylinder rotation rate must be larger than the incoming wave frequency. Here, we demonstrate experimentally that these conditions can be satisfied with acoustic waves. We show that low-frequency acoustic modes with orbital angular momentum are transmitted through an absorbing rotating disk and amplified by up to 30% or more when the disk rotation rate satisfies the Zel’dovich condition. These experiments address an outstanding problem in fundamental physics and have implications for future research into the extraction of energy from rotating systems

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized
    • 

    corecore