3,740 research outputs found
Recommended from our members
In vitro functional properties of the rat bladder regenerated by the bladder acellular matrix graft.
PurposeTo assess the response of rat urinary bladder regenerated by the homologous bladder acellular matrix graft (BAMG) to in vitro electrical and pharmacologic stimuli.Materials and methodsIn Sprague-Dawley rats, partial cystectomy (>50%) was performed, followed by BAMG augmentation cystoplasty. After 4 months, organ bath studies of tissue strips in 10 were used to compare the contractility of the BAMG regenerates and the corresponding host detrusor smooth muscle.ResultsThe BAMG regenerates exhibited contractile activity to electrical field stimulation and a qualitatively identical pattern of response to muscarinic, purinergic, alpha- and beta-adrenergic drug administration and nitric oxide. At 4 months after surgery, the maximum forces of contraction of the BAMG regenerates to carbachol stimulation amounted to close to 80% of the host bladder response. With electrical field stimulation, they equaled 44% and 62% of the host bladder response after 2.5 and 4 months, respectively. Histological and immunohistochemical studies confirmed the presence of receptors for neurotransmitters that these functional in vitro studies implied.ConclusionsThe present study provides further evidence that augmentation cystoplasty with the BAMG leads to functional regeneration of the rat bladder detrusor smooth muscle
Free ureteral replacement in rats: regeneration of ureteral wall components in the acellular matrix graft.
ObjectivesTo evaluate ureteral replacement by a free homologous graft of acellular matrix in a rat model.MethodsIn 30 male Sprague-Dawley rats, a 0.3 to 0.8-cm midsegment of the left ureter was resected and replaced with an acellular matrix graft of equal length placed on a polyethylene stent. The animals were killed at varying intervals, and the grafted specimens were prepared for light and electron microscopy.ResultsIn all animals, the acellular matrix graft remained in its original position without evidence of incrustation or infection, and histologic examination showed complete epithelialization and progressive infiltration by vessels. At 10 weeks, smooth muscle fibers were observed; at 12 weeks, nerve fibers were first detected; at 4 months, smooth muscle cells had assumed regular configuration.ConclusionsThe ureteral acellular matrix graft appears to promote the regeneration of all ureteral wall components
Recommended from our members
Bladder acellular matrix graft: in vivo functional properties of the regenerated rat bladder.
The purpose of this study was to determine whether the rat urinary bladder augmented by an acellular matrix graft can restore the bladder's low-pressure reservoir function and preserve normal micturition. After partial cystectomy (> 50%) and grafting with the bladder acellular matrix graft (BAMG), storage and voiding functions were monitored in 20 rats by means of a specially designed "micturition cage," leak-point cystography, and cystometry. After 4 months, sections (n = 6) were examined histologically to evaluate regeneration of bladder wall components within the BAMG. Bladder capacity and compliance increased progressively and were significantly higher in the grafted animals than in controls (partial cystectomy only), and volumes per void were significantly higher than in either control or normal animals. At 4 months, the regenerated urothelium, smooth muscle, blood vessels and nerves within the BAMG were qualitatively identical to normal bladder wall. Augmentation cystoplasty with the homologous BAMG leads to morphologic and functional rat bladder regeneration, thus enhancing low-pressure reservoir function and preserving normal micturition
Experimental Observations of Group Synchrony in a System of Chaotic Optoelectronic Oscillators
We experimentally demonstrate group synchrony in a network of four nonlinear
optoelectronic oscillators with time-delayed coupling. We divide the nodes into
two groups of two each, by giving each group different parameters and by
enabling only inter-group coupling. When coupled in this fashion, the two
groups display different dynamics, with no isochronal synchrony between them,
but the nodes in a single group are isochronally synchronized, even though
there is no intra-group coupling. We compare experimental behavior with
theoretical and numerical results
A baseline study of metal contamination along the Namibian coastline for Perna perna and Choromytilus meridionalis.
The use of bivalves such as the brown mussel (Perna perna) and the black mussel (Choromytilus meridionalis) is common in the study of marine pollution and the effect of these pollutants on ecosystems and are important in both economic and ecological roles. Namibian marine ecosystems are threatened by pollution from mining, commercial fishing and population growth. The aims of this study were to determine baseline metal concentrations, spatial variation and variation between species. Metal levels in C. meridionalis from Guano Platform (GP) are the lowest of all the sites. The most polluted sites are Rocky Point (RP), Halifax Island (HIL) and between Walvis Bay and Swakopmund (WS). The bioaccumulation of metals between P. perna and C. meridionalis were not uniform for all metals. Overall the study indicates the condition of the coastline to be mostly normal, with Cd and Pb levels being of concern
A task-centered approach to treatment planning
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44274/1/10566_2005_Article_BF01554911.pd
Examining the thermal properties of unirradiated nuclear grade graphite between 750 and 2500 K
This study presents the first high temperature measurements (between 750 K and 2500 K) of thermal conductivity, thermal diffusivity, specific heat and spectral emissivity of virgin graphite samples (type IM1-24) from advanced gas-cooled reactor (AGR) fuel assembly bricks. Scanning electron microscope (SEM) and X-ray computed tomography (XRT) techniques were used to verify the presence of Gilsocarbon filler particles (a characteristic microstructural feature of IM1-24 graphite). All thermal properties were investigated in two orthogonal directions, which showed the effective macroscopic thermal conductivity to be the same (to within experimental error). This can be linked to the morphology of the filler particles that consist of concentrically aligned graphitic platelets. The resulting spherical symmetry allows for heat to flow in the same manner in both macroscopic directions. The current thermal conductivity results were compared to other isotropic grade graphite materials. The significant discrepancies between the thermal conductivities of the individual grades are likely the result of different manufacturing processes yielding variations in the microstructure of the final product. Differences were identified in the filler particle size and structure, and possibly the degree of graphitization compared to other reported nuclear graphites
Symmetry-breaking transitions in networks of nonlinear circuit elements
We investigate a nonlinear circuit consisting of N tunnel diodes in series,
which shows close similarities to a semiconductor superlattice or to a neural
network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like
system. The tunnel diodes are coupled globally through a load resistor. We find
complex bifurcation scenarios with symmetry-breaking transitions that generate
multiple fixed points off the synchronization manifold. We show that multiply
degenerate zero-eigenvalue bifurcations occur, which lead to multistable
current branches, and that these bifurcations are also degenerate with a Hopf
bifurcation. These predicted scenarios of multiple branches and degenerate
bifurcations are also found experimentally.Comment: 32 pages, 11 figures, 7 movies available as ancillary file
- …