220 research outputs found

    An Examination of Preservice Teachers' Simulated Classroom Assessment Practices

    Get PDF
    The comments made by 127 preservice teachers (PTs) in the Faculty of Education, University of Victoria as they compiled portfolios on three hypothetical grade 5 children are examined. The PTs were asked to record their comments in the form of a journal throughout the term. At the end of the term the PTs' comments were collected, transcribed, and the resultant data analyzed using Atlas/ti. The data were analyzed to examine the types of decisions the PTs made about the hypothetical children. Two main patterns of decisions were taken by the PTs. Most seemed to follow a fairly logical set of procedures, formulating criteria to evaluate the assignments and then applying them. A few appeared to make judgments that may have been unsound, however, commenting on the children's quality of life or designating them as having special educational needs when the evidence presented did not support such conclusions.L’article traite des commentaires émis par 127 stagiaires de la faculté d'éducation de la University of Victoria qui rédigeaient un portfolio à partir d'enfants hypothétiques qui seraient en 5e année. On avait demande aux stagiaires de noter leurs commentaires dans un journal pendant tout le stage, âpres quoi ceux-ci ont etc. recueillis et transcrits pour ensuite être analyses à l'aide de Atlas/ti. Les données ont été analysées dans le but d'identifier le genre de décisions prises par les stagiaires au sujet des enfants hypothétiques. L'analyse a révèle deux principaux types de prise de décisions. La plupart des stagiaires adoptaient une Stratégie assez logique qui consistait à formuler des critères d'évaluation dans un premier temps, et à les appliquer aux devoirs dans un deuxième temps. Toutefois, quelques stagiaires ont pris des décisions qui ne semblaient pas fondées: Us ont fait des commentaires sur la qualité de vie des enfants ou ont désigne certains enfants comme ayant des besoins éducationnels spéciaux alors que l’information qui leur avait été présentée ne justifiait pas ce genre de conclusions

    Recovery of continuous wave squeezing at low frequencies

    Full text link
    We propose and demonstrate a system that produces squeezed vacuum using a pair of optical parametric amplifiers. This scheme allows the production of phase sidebands on the squeezed vacuum which facilitate phase locking in downstream applications. We observe strong, stably locked, continuous wave vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative resonator configuration to overcome low frequency squeezing degradation caused by the optical parametric amplifiers.Comment: 9 pages, 4 figure

    Rydberg excitation of a single trapped ion

    Full text link
    We demonstrate excitation of a single trapped cold 40^{40}Ca+^+ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d2^2D3/2_{3/2} to 51 F, 52 F and 3d2^2D5/2_{5/2} to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.Comment: 4 pages, 3 figure

    Towards Einstein-Podolsky-Rosen quantum channel multiplexing

    Full text link
    A single broadband squeezed field constitutes a quantum communication resource that is sufficient for the realization of a large number N of quantum channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each channel can serve as a resource for, e.g. independent quantum key distribution or teleportation protocols. N-fold channel multiplexing can be realized by accessing 2N squeezed modes at different Fourier frequencies. We report on the experimental implementation of the N=1 case through the interference of two squeezed states, extracted from a single broadband squeezed field, and demonstrate all techniques required for multiplexing (N>1). Quantum channel frequency multiplexing can be used to optimize the exploitation of a broadband squeezed field in a quantum information task. For instance, it is useful if the bandwidth of the squeezed field is larger than the bandwidth of the homodyne detectors. This is currently a typical situation in many experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of our work and its possible applicatio

    Deterministic Secure Communications using Two-Mode Squeezed States

    Get PDF
    We propose a scheme for quantum cryptography that uses the squeezing phase of a two-mode squeezed state to transmit information securely between two parties. The basic principle behind this scheme is the fact that each mode of the squeezed field by itself does not contain any information regarding the squeezing phase. The squeezing phase can only be obtained through a joint measurement of the two modes. This, combined with the fact that it is possible to perform remote squeezing measurements, makes it possible to implement a secure quantum communication scheme in which a deterministic signal can be transmitted directly between two parties while the encryption is done automatically by the quantum correlations present in the two-mode squeezed state.Comment: 10 pages, 4 figure

    Polariton Squeezing in Semiconductor Microcavities

    Full text link
    We report squeezed polariton generation using parametric polariton four-wave mixing in semiconductor microcavities in the strong coupling regime. The geometry of the experiment corresponds to degenerate four-wave mixing, which gives rise to a bistability threshold. Spatial effects in the nonlinear regime are evidenced, and spatial filtering is required in order to optimize the measured squeezing. By measuring the noise of the outgoing light, we infer a 9 percent squeezing on the polariton field close to the bistability turning point

    Double-lambda microscopic model for entangled light generation by four-wave-mixing

    Get PDF
    Motivated by recent experiments, we study four-wave-mixing in an atomic double-{\Lambda} system driven by a far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic properties of the medium, we calculate the classical and quantum properties of seed and conju- gate beams beyond the linear amplifier approximation. A continuous variable approach gives us access to relative-intensity noise spectra that can be directly compared to experiments. Restricting ourselves to the cold-atom regime, we predict the generation of quantum-correlated beams with a relative-intensity noise spectrum well below the standard quantum limit (down to -6 dB). Moreover entanglement between seed and conjugate beams measured by an inseparability down to 0.25 is expected. This work opens the way to the generation of entangled beams by four-wave mixing in a cold atomic sample.Comment: 11 pages, 6 figures, submitted to PR

    Two-photon interference with true thermal light

    Full text link
    Two-photon interference and "ghost" imaging with entangled light have attracted much attention since the last century because of the novel features such as non-locality and sub-wavelength effect. Recently, it has been found that pseudo-thermal light can mimic certain effects of entangled light. We report here the first observation of two-photon interference with true thermal light.Comment: 4 pages, 5 figures, PRA72, 043805 (2005

    Stability, Gain, and Robustness in Quantum Feedback Networks

    Full text link
    This paper concerns the problem of stability for quantum feedback networks. We demonstrate in the context of quantum optics how stability of quantum feedback networks can be guaranteed using only simple gain inequalities for network components and algebraic relationships determined by the network. Quantum feedback networks are shown to be stable if the loop gain is less than one-this is an extension of the famous small gain theorem of classical control theory. We illustrate the simplicity and power of the small gain approach with applications to important problems of robust stability and robust stabilization.Comment: 16 page

    Correlation Measurement of Squeezed Light

    Get PDF
    We study the implementation of a correlation measurement technique for the characterization of squeezed light which is nearly free of electronic noise. With two different sources of squeezed light, we show that the sign of the covariance coefficient, revealed from the time resolved correlation data, is witnessing the presence of squeezing in the system. Furthermore, we estimate the degree of squeezing using the correlation method and compare it to the standard homodyne measurement scheme. We show that the role of electronic detector noise is minimized using the correlation approach as opposed to homodyning where it often becomes a crucial issue
    • …
    corecore