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INO-CNR, Dipartimento di Fisica E. Fermi, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy

(Dated: July 9, 2010)

Motivated by recent experiments, we study four-wave-mixing in an atomic double–Λ system driven
by a far-detuned pump. Using the Heisenberg-Langevin formalism, and based on the microscopic
properties of the medium, we calculate the classical and quantum properties of seed and conju-
gate beams beyond the linear amplifier approximation. A continuous variable approach gives us
access to relative-intensity noise spectra that can be directly compared to experiments. Restricting
ourselves to the cold-atom regime, we predict the generation of quantum-correlated beams with a
relative-intensity noise spectrum well below the standard quantum limit (down to -6 dB). Moreover
entanglement between seed and conjugate beams measured by an inseparability down to 0.25 is
expected. This work opens the way to the generation of entangled beams by four-wave mixing in a
cold atomic sample.

PACS numbers:

I. INTRODUCTION

Four–wave mixing (FWM) has been identified early on
as a very efficient process to generate intense, non classi-
cal beams [1]. Indeed, the first experimental demonstra-
tion of squeezed light was made using FWM in a sodium
atomic beam almost 25 years ago [2]. More recently,
FWM in three–level Λ systems was predicted to gener-
ate squeezing by using a counter–propagating geometry
[3–6]. In addition Electromagnetically Induced Trans-
parency (EIT) in double-Λ atomic systems adds flexibil-
ity to the control of the FWM process, leading to large
parametric gain and oscillations [7, 8]. With such a sys-
tem, van der Wal et al. generated intensity correlations
between light pulses with a corresponding 0.2 dB of noise
reduction below the standard quantum limit (SQL) [9].
FWM in a double-Λ-system in a hot rubidium vapour and
with a co–propagating laser geometry was implemented
in refs. [10–15] and by some of us in ref. [16] to generate
bright correlated beams with a high degree of intensity
correlations.

In order to produce paired photons / twin beams tuned
near an atomic resonance, efficient FWM in atomic sam-
ples with a low parametric gain requires large optical
depths. On the other side cold atom samples provide a
precise control of atomic parameters as inhomogeneities
and decoherence processes. Thus, the combination of
double-Λ EIT and cold atoms has allowed the observa-
tion of FWM at ultra-low optical powers. An optically
thick cesium MOT allowed Kuzmich et al. [17] to gener-
ate nonclassical photon pairs with a programmable de-
lay. Generation and control of narrow-band paired pho-
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tons were demonstrated in a rubidium MOT [18–21] by
reaching a high optical depth (OD), around 60 [22]. Cor-
related photons were also produced by using cold atoms
inside a cavity [23] .

Following [24], recent publications [25–27] have the-
oretically explored the time correlations between pho-
tons observed in cold atom experiments. Propagation
of the generated photons through the optically thick
medium and Langevin forces represent the key elements
of these theoretical analyses. Following the seminal
papers [4, 5, 24] and the analysis of [26], we investi-
gate the generation of quantum correlated beams in co–
propagating beam geometry. This work presents a de-
tailed theoretical treatment of FWM in an optically thick
medium composed by cold atoms described by a four level
model, in a double-Λ configuration.

The main target is to explore the production of cor-
related beams in the atom-laser configuration experi-
mentally investigated in refs. [10–16], but using a cold
atom sample as in refs. [19–22]. While the theoreti-
cal descriptions [25–27], concentrated on the few pho-
ton regime, the experiments discussed in refs. [10–16] re-
quire to tackle the large photon number regime where
a description based on continuous variables is required
[28, 29]. Within this approach, we derive the quantum
noise frequency spectra and quantify the quantum entan-
glement between the generated beams.

Several additional original points of our analysis should
be listed. First, we investigate the pump-seed co–
propagating geometry, a setup which enabled to produce
large intensity quantum correlations in the experiments
[10–16]. Furthermore, in contrast to the phenomenolog-
ical description of ref. [12], gain and propagation losses
are intrinsically included in our microscopic approach.
As the most important result, our analytical and numer-
ical analysis predicts that a very large degree of intensity
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quantum correlations can be achieved also in a cold atom
FWM experiments, comparable to that achieved in refs
[10, 11, 16]. We also investigate the ability of such a
medium to simultaneously generate large phase anticor-
relations, leading to entanglement, a key ressource for
quantum information [29].

The paper is organized as follows. Section II intro-
duces the microscopic model as described by Heisenberg-
Langevin equations. Section III discusses the analytical
solution for the propagating quantum fields. In Section
IV we derive the mean values of the generated beams. We
introduce and calculate in Section V the intensity quan-
tum correlations and phase quantum anti–correlations
spectra between seed and conjugate beams including the
Langevin forces contribution. Finally, in Section VI, we
discuss the effect of decoherence processes and compare
the results to hot vapor experiments.

II. MICROSCOPIC MODEL –

HEISENBERG-LANGEVIN EQUATIONS

We consider a collection of atoms having the double
Λ type 4–level scheme of Fig. 1. The four atomic lev-
els |u〉, are defined by their energies Eu, and we in-
troduce the angular frequencies ωuv = (Eu − Ev)/~,
u, v ∈ {1, 2, 3, 4}, u > v. The populations of levels |3〉 and
|4〉 decay with a rate Γ. The atomic coherence between
levels |1〉 and |2〉 decays with rate γ and we neglect |1〉
and |2〉 population decays since we consider cold atomic
samples.

The atoms interact with three optical fields, pump
(angular frequency ωp) and seed (angular frequency ωa)
driving the first Λ subsystem (|1〉 → |3〉 → |2〉), conju-
gate (angular frequency ωb) and pump driving the sec-
ond Λ subsystem (|1〉 → |4〉 → |2〉). The detuning
of the pump field from the |1〉 → |3〉 transition is de-
noted ∆. The pump and the seed are near-resonant with
the |1〉 → |3〉 → |2〉 Raman transition with a two–photon
detuning δ. The double-Λ is closed by the conjugate and
pump beams driving the |1〉 → |4〉 → |2〉 Raman transi-
tion, assuming energy matching. As shown in Fig.1 the
pump laser is detuned by ∆ + ω0 + δ from the |2〉 → |4〉
transition, where ω0 = ω21 − ω43.

The interactions of the pump beam with the atoms are
described semi-classically. For the sake of simplicity we
limit our study to a 1D model with propagation along the
z-axis. The seed and conjugate beams are described by
two slowly varying quantum–mechanical operators; the
annihilation (resp. creation) operators being denoted â

(resp. â†) and b̂ (resp. b̂†).

Following the approach of ref. [24], the properties of the
medium are described by collective, slowly–varying oper-
ators σ̂uv(z, t) averaged over small layers denoted by their
position z. For each layer containing a large number of
atoms Nz, we define the following population/coherence
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FIG. 1: (color online) Level diagram with relevant detun-
ings. The two large red arrows indicate the pump coupling
between levels |1〉 and |3〉 (resp. |2〉 and |4〉), with equal Rabi
frequency Ω. δ represents the two-photon detuning on both
Λ subsystems. The strong pump and weak seed configuration
leads to optical pumping of the atoms into level |2〉.

operators σ̂uv:

σ̂uv(z, t) =
1

Nz

Nz
∑

j=1

|uj〉〈vj |e(−iω̃uvt+ikuvz), (1)

where ω̃31 = ω̃42 = ωp, ω̃32 = ωa, ω̃41 = ωb,
ω̃21 = ω̃43 = ωp − ωa . The kuv are the projec-

tions of the wavevectors ~kuv on the z axis with ~k31 and
~k42 equal to the pump wavevector, ~k32 equal to the seed

wavevector, and ~k41 equal to the conjugate wavevector,
~k21 = ~k23 −~k13 and ~k43 = ~k42 −~k32, with the convention
~kuv = −~kvu.

We write the laser–atom interaction Hamiltonian V̂ in
the rotating wave approximation, omitting for simplicity
the z and t dependencies of the atomic operators:

V̂ = −~N

L

∫ L

0

dz[(ω0 + ∆ + δ) σ̂44 + ∆σ̂33 + δσ̂22 (2)

+gaâ(z, t)σ̂32 + gbb̂(z, t)σ̂41 +
Ω

2
(σ̂31 + σ̂42)] + H.c.,

where N is the number of atoms in the quantization vol-
ume V of length L. ga,b are the atom – field coupling
constants: ga = ℘32εa

~
and gb = ℘41εb

~
where ℘uv is the

transition dipole moment and εa,b =
√

~ ωa,b

2ǫ0V
is the elec-

tric field of a single photon. In the following, we consider
ga = gb = g. Finally, Ω = 2℘E

~
is the pump laser Rabi

frequency with E the pump laser electric field amplitude.
We assume the transition dipole moment ℘ to be equal for
the two pump-driven transitions |1〉 → |3〉 and |2〉 → |4〉.

As described in ref. [26], the evolution of atomic opera-
tors is determined by the following Heisenberg-Langevin
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equations:

(

∂

∂t
+ γuv

)

σ̂uv =
i

~
[V̂ , σ̂uv] + r̂uv + F̂uv, (3)

where γuv are the atomic dephasing rates and r̂uv are
the source terms produced by spontaneous emission as
defined in [26]. Following the ref. [25], the Langevin

operators F̂uv are characterized by

〈

F̂uv(z, t)
〉

= 0, (4)

and
〈

F̂ †
uv(z, t)F̂u′v′(z′, t′)

〉

= 2Duv,u′v′δ(t− t′)δ(z − z′). (5)

Equation (5) defines the 256 diffusion coefficients
Duv,u′v′ ; we show in Appendix B that only a few of them
will be required in next section.

Following the approach of refs. [5, 7, 26], the descrip-
tion of the atom–laser system is completed by a set of
nonlinear, coupled differential equations describing the
propagation and temporal evolution of the quantum field
operators

(

∂

∂t
+ c

∂

∂z

)

â(z, t) = igN σ̂23(z, t), (6)

(

∂

∂t
+ c

∂

∂z

)

b̂†(z, t) = −igN σ̂41(z, t), (7)

where N = N/V is the atomic density.

III. ANALYTICAL SOLUTION

The system evolution is described by a set of non–
linear, coupled differential equations for quantum fields
and atomic operators which require further approxima-
tions to be solvable analytically. We assume a pump
beam highly saturating the medium and very intense
compared to the seed and conjugate beams. Within these
assumptions the populations σ̂11, σ̂22, σ̂33, σ̂44 and the
coherences σ̂31, σ̂13, σ̂42, σ̂24 are dominantly driven by
the pump beam. In this case the complete non–linear
differential equations system can be separated into two
subsystems. In the first subsystem (Eq. A.1), the effect
of seed and conjugate can be neglected and these equa-
tions are solved in the steady state. The correspond-
ing solutions are given in Appendix A. These solutions
are then injected in Eq.(B1) which determine the coher-
ences σ̂14, σ̂41, σ̂23, σ̂32, σ̂12, σ̂21, σ̂34, σ̂43 as a function

of â and b̂† as described in detail in Appendix B.
Eqs. (6) and (7) can then be written in a closed

form and solved analytically in the Fourier space. The

Fourier transforms of â(t, z), b̂†(t, z) will be denoted

â(ω, z), b̂†(ω, z), where for simplicity we have used the
same notation for operators in the time and frequency

domains. Notice our notation for the Fourier transform
of an operator and its conjugate

â(ω) =

∫ ∞

−∞

â(t) eiωt dt ; â†(ω) =

∫ ∞

−∞

â†(t) eiωt dt, (8)

leading to [â(ω)]† = â†(−ω). The Fourier transforms of
the quantum operators satisfy then the following equa-
tions:

1

k32

∂

∂z
â(ω) = ηa(ω)â(ω) + κa(ω)b̂†(ω) + F̂at.

a (ω), (9)

1

k41

∂

∂z
b̂†(ω) = κb(ω)â(ω) + ηb(ω)b̂†(ω) + F̂at.

b† (ω), (10)

where ηa(ω) (resp. ηb(ω)) is the complex refractive in-
dex of the medium ”dressed” by the pump laser for the

mode â (resp. b̂†). κa(ω) (resp. κb(ω)) is the parametric

conversion coefficient from mode â to b̂† (resp. b̂† to â),

F̂at.
a and F̂at.

b†
are the Langevin terms originating from

the atomic Langevin forces and can be calculated from
Eq. (B10).

Following a standard approach of quantum optics [30],
we use the input/output formalism to compute the quan-
tum operators of seed and conjugate fields. We introduce

the input operators, âin and b̂†in for z = 0 and the output

operators âout and b̂†out for z = L. The formal solution
of the propagation equations (9)-(10) is given by

[

âout(ω)

b̂†out(ω)

]

=

[

A(ω) B(ω)
C(ω) D(ω)

] ([

âin(ω)

b̂†in(ω)

]

+

[

F̂a,out(ω)

F̂b,out(ω)

])

(11)
where the coefficients A(ω), B(ω), C(ω), D(ω) and the

Langevin terms F̂b,out(ω), F̂a,out(ω) are defined in Ap-
pendix C. Eq.(11) allows us to compute both the output

fields mean values (〈âout〉 , 〈b̂†out〉) and their fluctuations

(δâout, δb̂
†
out).

As in typical FWM experiments, in the following we

will suppose that the input on the conjugate mode b̂ is the

vacuum (〈b̂in〉 = 0) and that the input on the seed mode
is an arbitrary field of mean value 〈âin〉. The average
values of the output seed and conjugate fields are given
by

〈âout(ω = 0)〉 = A(0) 〈âin〉 (12)
〈

b̂†out(ω = 0)
〉

= C(0) 〈âin〉 . (13)

We define then Ga = |A(0)|2 as the seed gain and Gb =
|C(0)|2 as the ratio between the conjugate output and
seed input intensities.

IV. CLASSICAL PROPERTIES OF THE

MEDIUM

The mean value expressions for the seed and conju-
gate output operators allow us to calculate the output
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FIG. 2: Spectra of the Ga seed beam gain in a) and of the
conjugate beam gain Gb in b) as a function of the two photon
detuning δ. The parameters used for the plot are : γ/2π =
10 kHz; Ω/2π = 0.3 GHz; ∆/2π = 1 GHz. The seed beam dip
for δ ≃ ∆ in a) is originated by absorption on the |2〉 → |3〉
transition. Expanded views of Ga and Gb gains around δ = 0
are shown in the insets. The peculiar line-shapes are the result
of a nontrivial interplay between the two processes discussed
in the text.

intensities which can be experimentally measured. The
parameters used in the following for laser intensities and
detunings are derived from hot vapors experiments such
as [10–16], so that in our numerical calculations, we will
use 0.7 < ∆/2π < 3 GHz and 0.3 < Ω/2π < 2 GHz.

We consider the D1 transition of 85Rb: lasers wave-
length 795 nm; ω0/2π = 3 GHz; natural linewidth
Γ/2π = 5.7 MHz; resonant absorption cross section
σ0 = 10−9 cm2 [31]. For the optical depth defined by
OD = Nσ0L, we use the value of 150 reachable by im-
proving a cold-atom configuration such that of ref. [22].
In cold atom experiments, magnetic field inhomogeneity
and atomic collisions may determine the γ decoherence
rate. In a state-of-the-art experiment, γ depends mainly
on the relative phase stability of the lasers and is as low
as γ/2π ≃ 10 Hz [32]. However, as specifically discussed
in Sec. VIA, our results shows a weak dependence on this
parameter and γ/2π = 10 kHz will be usually assumed.

Fig. 2 reports numerical simulation results for the seed
and conjugate gains as function of the two-photon de-
tuning δ. As described in ref. [6] different elementary
processes contribute to the system dynamics. Effective
coherent photon redistribution from pump to seed and
conjugate occurs when the four-photon resonance con-
dition is fulfilled (δ ≃ 0). Let us note that the same

resonance condition holds for a Raman absorption pro-
cess involving the seed beam. While it is quite obvious

that mode b̂ will always be amplified as soon as the non–
linearity exceeds the absorption loss, the behaviour of
mode â is more complicated and relies on the interfer-
ence between redistribution and Raman processes. The
spectrum profile of the seed gain (Fig. 2a) is character-
ized by absorption at δ ≃ ∆, with a width imposed by Γ
and the propagation through the optically thick medium.
For δ ≃ 0, the seed gain spectrum displays a sharp pro-
file containing both gain and absorption contributions
(Fig. 2a inset). The seed absorption is due to the Ra-
man process on the transition |2〉 → |1〉 involving one
seed photon and one pump photon, while the gain can
be attributed to the FWM process. For a pump laser in
resonance with one ”arm” of the Λ transition the EIT
profile assumes the characteristic lineshape of a narrow
dip inside a Lorentzian profile. In an EIT configuration
with the pump laser detuned from the resonance, the
absorption profile of the seed field becomes asymmetric
about the two-photon resonance assuming a characteris-
tic Fano-like profile as in the experiments of refs. [33–36]
and the theoretical analysis of ref. [37]. The δ ≃ 0 pro-
file of Ga is similar to the EIT Fano profiles reported in
the above references, except that Ga ≥ 1 in a narrow
frequency range. The precise positions of the seed ab-
sorption and Fano-like feature are given by the AC Stark
shifts induced by the pump laser.

The Gb spectrum, shown in Fig. 2b reports a reduction
of the gain in the region δ ≃ 0 with a width matching that
of the dip in the Ga spectrum. In a naive description,
conjugate gain does not increase along the propagation
when the seed is completely depleted.

V. QUANTUM PROPERTIES OF THE SYSTEM

A. Noise spectra

Now we focus our attention to the quantum proper-
ties of the system. We follow the standard approach of
the continuous variable formalism [30] to calculate the
noise spectra. For the seed mode â we introduce the
following amplitude and phase quadrature fluctuations
components, δx̂a and δp̂a respectively:

δx̂a = δâe−iϕa + δâ†eiϕa (14)

δp̂a = −i(δâe−iϕa − δâ†eiϕa) (15)

where ϕa is the phase of the mean field 〈â〉. We define ac-
cordingly the amplitude quadrature fluctuations for the

conjugate mode b̂, δx̂b and δp̂b. Following the Wiener–
Khintchine theorem, the spectrum of a given quantity û
can be evaluated by taking the Fourier transform of its
autocorrelation function [30]:

Sû(ω)2πδ(ω − ω′) =
〈

û(ω)û†(ω′)
〉

(16)

We analyze the FWM configuration of refs. [10–16]
with a coherent state for the seed input of mean value
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amplitude α. In agreement with the symmetric ordering
of the operators [30] to be used hereafter, the covariance

matrix for the input seed field is given by





〈

δx̂a,in(ω)δx̂†
a,in(ω′)

〉 〈

δx̂a,in(ω)δp̂†a,in(ω′)
〉

〈

δp̂a,in(ω)δx̂†
a,in(ω′)

〉 〈

δp̂a,in(ω)δp̂†a,in(ω′)
〉



 = 2πδ(ω + ω′)

[

1 0
0 1

]

, (17)

and a similar definition applies for covariance matrix of
the conjugate mode but with a zero mean input power.
Notice that, according to [38, 39], the choice of order-
ing of the operators should not influence the calculated
spectra.

Using Eq. (11) for the propagation of the quantum
operators for the seed and conjugate fields and the input
covariance matrix defined in Eq. (17), the quantum noise
spectra for the quadrature amplitude of the fields are
given by

Sx̂a,out
(ω) = |〈âout〉|

2

2

[

|A(ω)|2(1 + Daa†(ω)) + |A(−ω)|2(1 + Da†a(−ω))

+ |B(ω)|2(1 + Db†b(ω)) + |B(−ω)|2(1 + Dbb†(−ω))
]

, (18)

Sx̂b,out
(ω) =

|〈b̂out〉|2
2

[

|C(ω)|2(1 + Daa†(ω)) + |C(−ω)|2(1 + Da†a(−ω))

+ |D(ω)|2(1 + Db†b(ω)) + |D(−ω)|2(1 + Dbb†(−ω))
]

, (19)

where the calculation method of the four atom–driven
Langevin diffusion terms Daa† , Da†a Db†b and Dbb† is
presented in Appendix D. All those coefficients are, by
construction, real and positive quantities and act as ad-
ditional noise source terms on the quantum noise spectra.
Their specific contribution will be discussed below.

The interest for the double-Λ FWM system stems in
particular from its ability to generate quantum field cor-
relations. Such correlations can concern a single quadra-
ture of seed and conjugate fields (e.g. intensity correla-
tions as in refs. [40, 41]) or two conjugated quadratures
(e.g. intensity correlations and phase anti-correlations).
In the second case, seed and conjugate fields can be en-
tangled Let us note that while most FWM experiments
investigated intensity squeezing, Ref. [14] reports entan-
glement in a hot atomic vapour. In order to detect the
entanglement, we will here use the I(ω) < 1 sufficient
criterion introduced in [42, 43] and based on the insepa-
rability parameter defined by

I(ω) =
1

2
(S−

x + S+
p ). (20)

Here S−
x is the intensity correlation spectrum and S+

p the
phase anti–correlation spectrum both normalized to the
standard quantum limit (SQL). S−

x is derived by applying
Eq. (16) to

û =
1√
2

(δx̂a,out(ω) − δx̂b,out(ω)) (21)

and normalizing it to the sum of gain on mode â and

mode b̂: (Ga + Gb). Correspondingly S+
p is obtained

with

û =
1√
2

(δp̂a,out(ω) + δp̂b,out(ω)) (22)

with the same normalization. Inseparability will be used
below to give a higher bound for entanglement as dis-
cussed in ref. [44]. Eq.(20) leads to the following expres-
sions for the normalized intensity correlation spectrum
and the normalized phase anti–correlation spectrum:

S−

x (ω) =
1

2(Ga + Gb)

`

(|A(0)∗A(ω) − C(0)∗C(ω)|2)(1 + Daa† (ω)) + (|A(0)A(−ω)∗ − C(0)C(−ω)∗|2)(1 + Da†a(−ω))

+ (|A(0)∗B(ω) − C(0)∗D(ω)|2)(1 + Db†b(ω)) + (|A(0)B(−ω)∗ − C(0)D(−ω)∗|2)(1 + Dbb† (−ω))
´

(23)

S+
p (ω) =

1

2(Ga + Gb)

`

(|A(0)C(ω) − C(0)∗A(ω)∗|2)(1 + Daa† (ω)) + (|A(0)C(−ω)∗ − C(0)∗A(−ω)∗|2)(1 + Da†a(−ω))

+ (|A(0)D(ω) − C(0)∗B(ω)∗|2)(1 + Db†b(ω)) + (|A(0)D(−ω)∗ − C(0)∗B(−ω)∗|2)(1 + Dbb† (−ω))
´

(24)
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In contrast to the case of Eq. (18), which is a sum of pos-
itive terms, a non-vanishing set of coefficients A, B, C,D
could exist in the Eq. (23), such that the spectrum
of the intensity difference S−

x (ω) → 0 (same holds for
Eq. 24). For example, in the case of a system be-
having as an infinite bandwidth ideal linear amplifier
having gain equal to G (|A(ω)|2 = |D(ω)|2 = G and
|B(ω)|2 = |C(ω)|2 = G − 1, and vanishing Duv), the
relative intensity noise spectra is given by

S−
x (ω) =

1

2G − 1
, (25)

as reported in [12]. Let us note that our model describes
the frequency dependence of the noise spectra as well as
the Langevin forces contribution through the coefficients
Daa† , Da†a Db†b and Dbb† .

Fig. 3 displays the intensity correlations and phase
anti–correlations spectra versus ω/2π (analysis fre-
quency) for two values of Ω and ∆. For each set of values
the two–photon detuning δ is chosen in order to optimize
the noise reduction, close to the maximum gain value. In
both cases the output beams are entangled since they dis-
play both non classical intensity correlations and phase
anti-correlations. Our calculation shows that, within the
explored range of parameters, at fixed Ω/∆ the optimum
entanglement increases with Ω. Let us note that both
seed and conjugate output beams display an intensity
noise above the standard quantum limit as reported in
hot atomic vapor experiments [10].

B. Contribution of Langevin forces

Eqs. (23) and (24) show that the contribution of the
Langevin forces is purely detrimental for entanglement.
In a previous paper studying similar systems [26], the
contribution of Langevin forces was negligible. In our
system we found that it was not the case and we have
specifically investigated their role. Fig. 4 shows the in-
separability spectra versus the analysis frequency in pres-
ence and absence of the Langevin terms. Their effect is
small but clearly non–negligible and increases with ω.
Let us point out that, when neglecting the Langevin cor-
rection terms, our calculation leads to non–physical spec-
tra for the mode â, i.e., the noise can fall simultaneously
below the SQL for both phase and intensity quadratures.
On the contrary, by including the Langevin terms, we
always obtain, as mentioned above, excess noise on both
quadratures.

VI. DISCUSSION

Below, we discuss briefly the role of the ground state
decoherence rate as well as the comparison of the model
to the results of a hot vapor experiment.
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FIG. 3: (color online) Intensity correlations (black dashed)
and phase anti–correlations (red continuous) spectra (in dB)
as a function of analysis frequency for a) Ω/2π = ∆/2π =
0.3 GHz and δ/2π =-48 MHz and b) Ω/2π = ∆/2π = 2 GHz
and δ/2π =-217 Mhz. Inseparability can be obtained by tak-
ing the half sum of the two correlation spectra.
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FIG. 4: (color online) Inseparabilty with (red line) and with-
out (black dashed) the Langevin noise correction. Parameters
as in Fig. 3b).

A. Role of the ground state decoherence rate

Quantum correlations are notably sensitive to various
decoherence mechanisms. In Fig. 5 we present the evolu-
tion of the maximal quantum correlations (in terms of the
I inseparability) as a function of the γ decohernece rate.
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While high relaxation rates (γ/2π > 10 MHz) do not al-
low for the observation of entanglement, the smooth be-
havior in the low γ region shows that the system is quite
robust against mild decoherence mechanisms. These ob-
servations show that coherences between hyperfine levels
play a key role for the production of entanglement in
FWM experiments.
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FIG. 5: Effect of the decoherence between the two ground
state on the I(ω) inseparability at ω/2π = 1 MHz. One can
see that the process is robust to decoherence up to 1 MHz.
Parameters: Ω/2π = ∆/2π = 2 GHz, δ/2π = −217 MHz.

B. Comparison to hot atomic vapor experiments

The presented numerical results were obtained assum-
ing a stationary regime (no transient phenomena asso-
ciated to transit-time) and in the absence of inhomoge-
neous Doppler broadening. The extension of the model
in order to include these effects is beyond the scope of
the present work. However, let us present the result of
the calculation of the Ga seed gain, using our cold atom
model, assuming the set of atom/laser parameters ex-
plored by McCormick et al [10]. For the atomic density,
we assume N ≃ 4.1012 cm−3 falling into the range ex-
plored by the experiments of refs. [10–16]. We estimate
the decoherence rate γ/2π = 500 kHz from the mean
transit time through the pump beam.

Fig. 6 shows our numerical result for Ga spectrum and
compares them to the experimental observations kindly
provided by P. D. Lett. Notice that the gain spectrum
contains twice the absorption and Fano-like feature of
Fig. 2, because the seed and conjugate beams exchange
their roles in a large scan of the seed laser frequency.
Even if the cold-atom model cannot reproduce exactly
the data obtained in a heated cell where the Doppler
effect plays a major role, the main features of the exper-
imental transmission profile are well reproduced. In ad-
dition the gain peaks occur at the predicted two-photon
detuning; the coherent absorption dips are present and
finally the asymmetric profile of the left peak is also ac-
counted for. The gain peak values of the hot vapor exper-
iment are in very good agreement with those predicted

by the cold-atom simulation.

6

4

2

0

-2 0 2 4 6

−δ/2π (GHz)

 G
a

 

FIG. 6: Gain spectrum Ga of a weak seed beam as a function
of the two photon detuning δ. The black dashed line reports
the experimental data for a heated Rb cell, as published in
ref.[11] by the NIST group (courtesy of P. D. Lett). These
results are obtained with a pump power P=400 mW, a pump
beam waist of 650 µm (Ω/2π = 330 MHz), a pump detuning
∆/2π = 700 MHz, and L = 12.5 mm. The red solid line
corresponds to the theoretical predictions of our model using
those parameters and an atomic density N = 4×1012 cm−3 in
agreement with that estimated from the measured rubidium
cell temperature. The gray shaded area corresponds to the
spectrum reported in Fig. 2a (please note the reversed scale).
The absorption dip and the Fano-like profile on the right part
of the figure, absent in the simulation of Fig. 2, are originated
by the seed acting on the |1〉 → |4〉 transition.

VII. CONCLUSION

We explored analytically and numerically the FWM
generation process for an atomic double-Λ system. The
Heisenberg-Langevin formalism allowed us to describe
the classical and quantum properties of seed and conju-
gate beams beyond the linear noiseless amplifier approx-
imation. A continuous variable approach gave us access
to relative-intensity noise spectra (that can be directly
compared to experiments). In the very wide parameter
space of this system, we explored a range of large pump
Rabi frequency and detuning, recently addressed by hot
Rb vapors experiments. However, Doppler broadening
was not taken into account in our analysis and the op-
tical depth was assumed compatible with a cold-atom
sample. In this previously unexplored regime, we pre-
dict the generation of quantum-correlated beams with a
relative-intensity noise spectrum well below the standard
quantum limit, down to -6 dB. Moreover, the calculations
predict entanglement between seed and conjugate beams
characterized by a inseparability down to I = 0.25. We
verified that in the explored regime the Langevin forces
cannot be neglected and reduce the performances of the
system. We examined the role played by the ground-
state (hyperfine) coherence in the generation of quantum
correlations: the smooth behavior in the low γ region let
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us predict that the system is robust against mild deco-
herence mechanisms, as magnetic field inhomogeneities.

Our model investigating the double Λ scheme is quite
general. It may be applied to describe a wide range of
systems having the same level structure, for instance in
solid state physics.
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APPENDIX

Appendix A: Steady state

In zeroth-order perturbation expansion, in which â

and b̂† go to zero, the Heisenberg-Langevin equations for

σ̂11, σ̂22, σ̂33, σ̂31, σ̂13, σ̂42, σ̂24 atomic operators are de-
coupled. The mean values of these operators are required
for the next order solution. We assume the pump beam
to propagate without depletion, as we verified numeri-
cally. Then the subset of equations for the mean value
variables 〈σ̂11〉 , 〈σ̂22〉 , 〈σ̂33〉 , 〈σ̂31〉 , 〈σ̂13〉 , 〈σ̂42〉 , 〈σ̂24〉 to
be solved at the steady state is written in matricial form
as following:

(

i[1]
∂

∂t
+ [〈M0〉]

)

|Σ0] = |S0] (A1)

with

[M0] =





















iΓ
2 iΓ

2 0 −Ω
2

Ω
2 0 0

iΓ
2 iΓ

2 0 0 0 −Ω
2

Ω
2

0 0 iΓ Ω
2 −Ω

2 0 0
−Ω

2 0 Ω
2 −∆ + iΓ

2 0 0 0
Ω
2 0 −Ω

2 0 ∆ + iΓ
2 0 0

−Ω
2 −Ω −Ω

2 0 0 −∆ − ω0 + iΓ
2 0

Ω
2 Ω Ω

2 0 0 0 ∆ + ω0 + iΓ
2





















(A2)

|Σ0] =



















σ11

σ22

σ33

σ31

σ13

σ42

σ24



















, |S0] =
1

2



















iΓ
iΓ
0
0
0
−Ω
Ω



















. (A3)

The steady state solution of Eq. (A1) is

|〈Σ0〉] = [M0]
−1|S0]. (A4)

Appendix B: Atomic Heisenberg-Langevin equations

The first order solution for the four coherences,
σ̂23, σ̂41, σ̂43, σ̂21 is determined by the following matricial
equation

(

i[1]
∂

∂t
+ [M1]

)

|Σ1] = |S1]|Â] + i|F1] (B1)

with

[M1] =







iΓ/2 + (∆ − δ) 0 −Ω/2 Ω/2
0 iΓ/2 − (∆ + δ + ω0) Ω/2 −Ω/2

−Ω/2 Ω/2 iΓ − (δ + ω0) 0
Ω/2 −Ω/2 0 iγ − δ






(B2)
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|Σ1] =







σ23

σ41

σ43

σ21






, |S1] = g







〈σ33 − σ22〉 0
0 〈σ11 − σ44〉

−〈σ42〉 〈σ13〉
〈σ31〉 −〈σ24〉






,

|Â] =

[

â

b̂†

]

, |F1] =







F23

F41

F43

F21






. (B3)

A similar set of equations holds for the hermitian conju-
gate operators.

The Langevin atomic forces |F ] are characterized by
their diffusion coefficients matrix [D] (Eq. (5)). In order
to comply with the symmetrical ordering condition intro-
duced in Section V, we write the following symmetrize
diffusion coefficients

[D] = ([D1] + [D2]), (B4)

having defined

[D1]2δ(t − t′)δ(z − z′) = 〈|F1(z, t)][F †
1 (z, t′)|〉, (B5)

[D2]2δ(t − t′)δ(z − z′) = 〈|F †
1 (z, t)][F1(z, t′)|〉. (B6)

Langevin diffusion coefficients for operators can be
calculated using the generalized Einstein relation as in
ref. [30]. The [D1] and [D2] diffusion matrices are given
by

[D1] =
1

2τ

2

6

6

4

Γ
`

Γ2 + 4∆2 + 2Ω2 + 8∆ω0 + 4ω2
0

´

0 iΓΩ(Γ + 2i(∆ + ω0)) 0
0 0 0 −iγΩ(Γ − 2i(∆ + ω0))

−iΓΩ(Γ − 2i(∆ + ω0)) 0 ΓΩ2 0
0 iγΩ(Γ + 2i(∆ + ω0)) 0 ΓΩ2 + 2γ

`

Γ2 + 4∆2 + Ω2 + 8∆ω0 + 4ω2
0

´

3

7

7

5

[D2] =
1

2τ

2

6

6

4

0 0 0 −iγ(Γ − 2i∆)Ω
0 Γ

`

Γ2 + 4∆2 + 2Ω2
´

iΓ(Γ + 2i∆)Ω 0
0 −iΓ(Γ − 2i∆)Ω ΓΩ2 0

iγ(Γ + 2i∆)Ω 0 0 ΓΩ2 + 2γ
`

Γ2 + 4∆2 + Ω2
´

3

7

7

5

(B7)

where τ = 2Γ2 + 4Ω2 + 4ω2
0 + 8∆2 + 8∆ω0

The system of Eq. (B1) is solved by writing each
atomic operator as the sum of its mean value and a quan-
tum fluctuation term

|Σ1] = |〈Σ1〉] + |δΣ1], (B8)

By linearizing Eq. (B1) we derive for the mean values

|〈Σ1〉] = [M1]
−1|S1]|〈Â〉]. (B9)

and for the Fourier transformed quantum fluctuations

|δΣ1] = ([M1] + ω[I])−1|S1]|δÂ] + i([M1] + ω[I])−1|F1].
(B10)

Appendix C: Quantum field Heisenberg-Langevin

equations

The propagation matrix for the quantum field opera-
tors of Eq. (11) is obtained by replacing the σ̂23(t, z) and
σ̂41(t, z) solutions of Eq.(B8) into the differential Eqs. (6)
- (7) and solving these equations. By defining

[

A(ω) B(ω)
C(ω) D(ω)

]

= e[M(ω)]L, (C1)

where [M(ω)] is a 2x2 matrix given by

[M(ω)] = −i
g2N

c
[T ]([M1] + ω[I])−1|S1] (C2)

with [T ] =

[

−1 0 0 0
0 1 0 0

]

.

The Langevin force terms of Eq. (11) are given by

[

F̂a,out(ω)

F̂b†,out(ω)

]

= L

∫ 1

0

e[M(ω)]Lz[MF (ω)]|F1]dz (C3)

where

[MF (ω)] = −gN

c
[T ]([M1] + ω[1])−1. (C4)

Let us point out that the conjugate operators for the
quantum fields are given by

[

δâ†
out(ω)

δb̂out(ω)

]

= e[M∗(−ω)]L

([

δâin(ω)

δb̂†in(ω)

]

+

[

F̂a†,out(ω)

F̂b,out(ω)

])

,

(C5)
with

[

Fa†,out(ω)
Fb,out(ω)

]

= L

∫ 1

0

e−[M∗(−ω)]Lz[M∗
F (−ω)]|F †

1 ]dz,

(C6)
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where we have introduced |F †
1 ] =







F32

F14

F34

F12






.

Appendix D: Langevin forces contribution to noise

spectra

We will present this calculation for the term
〈F̂a(ω)F̂a†(ω′)〉 term, as the extension to the remaining
ones is straightforward. Substituting the expression of
Eq. (C6) this term is given by

〈F̂a(ω)F̂a†(ω′)〉 = 〈[1 0|
∫ 1

0

e−[M(ω)]Lz[MF (ω)]|F1(z, ω)]dz

×
∫ 1

0

[F †
1 (z′, ω′)| t[M∗

F (−ω′)]e−
t[M∗(−ω′)]Lz′

dz′|1 0]〉(D1)

The Langevin forces are δ-correlated in z so integration
over z′ gives :

〈F̂a(ω)F̂a†(ω′)〉 = [1 0|〈
∫ 1

0

e−[M(ω)]Lz[MF (ω)]|F1(z, ω)]

×[F †
1 (Lz, ω′)| t[M∗

F (−ω′)]e−
t[M∗(−ω′)]Lzdz〉|1 0]. (D2)

By defining the Daa†(ω) coefficient as

〈F̂a(ω)F̂a†(ω′)〉 = Daa†(ω)2π δ(ω + ω′) (D3)

we obtain

Daa†(ω) = L2[1 0|
∫ 1

0

e−[M(ω)]Lz[MF (ω)][D]

×t[M∗
F (−ω′)]e−

t[M∗(−ω′)]Lzdz〉|1 0], (D4)

within the [D] diffusion matrix given by Eq. (B4). In a
similar way it is possible to derive Da†a(ω), Dbb†(ω) and
Db†b(ω), as detailed in [45].
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