20,252 research outputs found
Energy Distribution in disordered elastic Networks
Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed
Recommended from our members
Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora
We suggest that the Tambora 1815 eruption was smaller than previously thought, yielding 30–33 km3 of magma. Valuable insight into the eruption is gained by comparing it to the much smaller 1991 Pinatubo event, which had a similar eruption style and rate. By measuring pre- and post-eruption sulfur concentrations in 1815 ejecta, we estimate that Tambora released 53–58 Tg (5.3–5.8 × 1013 g) of SO2 within a period of about 24 hours on 10–11 April, 1815. This was sufficient to generate between 93 and 118 Tg of stratospheric sulfate aerosols. A value within this range, distributed globally, agrees well with estimates of aerosol mass from ice-core acidity and the radiative impact of the eruption. In contrast to other recent explosive arc eruptions, the Tambora ejecta retain a record of the sulfur mass released, with no “excess sulfur”
Critical exponents of a three dimensional O(4) spin model
By Monte Carlo simulation we study the critical exponents governing the
transition of the three-dimensional classical O(4) Heisenberg model, which is
considered to be in the same universality class as the finite-temperature QCD
with massless two flavors. We use the single cluster algorithm and the
histogram reweighting technique to obtain observables at the critical
temperature. After estimating an accurate value of the inverse critical
temperature \Kc=0.9360(1), we make non-perturbative estimates for various
critical exponents by finite-size scaling analysis. They are in excellent
agreement with those obtained with the expansion method with
errors reduced to about halves of them.Comment: 25 pages with 8 PS figures, LaTeX, UTHEP-28
The Tails of the Crossing Probability
The scaling of the tails of the probability of a system to percolate only in
the horizontal direction was investigated numerically for correlated
site-bond percolation model for .We have to demonstrate that the
tails of the crossing probability far from the critical point have shape
where is the correlation
length index, is the probability of a bond to be closed. At
criticality we observe crossover to another scaling . Here is a scaling index describing the
central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical
change
The Finite Field Kakeya Problem
A Besicovitch set in AG(n,q) is a set of points containing a line in every
direction. The Kakeya problem is to determine the minimal size of such a set.
We solve the Kakeya problem in the plane, and substantially improve the known
bounds for n greater than 4.Comment: 13 page
Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays
We present new Chandra and XMM-Newton observations of a sample of eight
radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For
all eight pulsars we identify the X-ray counterpart, based on the X-ray source
localization and the best position obtained from Gamma-ray pulsar timing. For
PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind
nebula. Our new results consolidate the work from Marelli et al. 2011 and
confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of
radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while
the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars,
the distribution is more dispersed for the radio-loud ones, possibly showing
two peaks. We discuss possible implications of these different distributions
based on current models for pulsar X-ray emission.Comment: Accepted for publication in The Astrophysical Journal; 12 pages, 3
figures, 2 table
Energy-level quantization in YBa2Cu3O7-x phase-slip nanowires
Significant progress has been made in the development of superconducting
quantum circuits, however new quantum devices that have longer decoherence
times at higher temperatures are urgently required for quantum technologies.
Superconducting nanowires with quantum phase slips are promising candidates for
use in novel devices that operate on quantum principles. Here, we demonstrate
ultra-thin YBa2Cu3O7-x nanowires with phase-slip dynamics and study their
switching-current statistics at temperatures below 20 K. We apply theoretical
models that were developed for Josephson junctions and show that our results
provide strong evidence for energy-level quantization in the nanowires. The
crossover temperature to the quantum regime is 12-13 K, while the lifetime in
the excited state exceeds 20 ms at 5.4 K. Both values are at least one order of
magnitude higher than those in conventional Josephson junctions based on
low-temperature superconductors. We also show how the absorption of a single
photon changes the phase-slip and quantum state of a nanowire, which is
important for the development of single-photon detectors with high operating
temperature and superior temporal resolution. Our findings pave the way for a
new class of superconducting nanowire devices for quantum sensing and
computing
- …
