58 research outputs found

    Climate change alters fish community size-structure, requiring adaptive policy targets

    Get PDF
    Size‐based indicators are used worldwide in research that supports the management of commercially exploited wild fish populations, because of their responsiveness to fishing pressure. Observational and experimental data, however, have highlighted the deeply rooted links between fish size and environmental conditions that can drive additional, interannual changes in these indicators. Here, we have used biogeochemical and mechanistic niche modelling of commercially exploited demersal fish species to project time series to the end of the 21st century for one such indicator, the large fish indicator (LFI), under global CO2 emissions scenarios. Our modelling results, validated against survey data, suggest that the LFI's previously proposed policy target may be unachievable under future climate change. In turn, our results help to identify what may be achievable policy targets for demersal fish communities experiencing climate change. While fisheries modelling has grown as a science, climate change modelling is seldom used specifically to address policy aims. Studies such as this one can, however, enable a more sustainable exploitation of marine food resources under changes unmanageable by fisheries control. Indeed, such studies can be used to aid resilient policy target setting by taking into account climate‐driven effects on fish community size‐structure

    Missing links in the study of solute and particle exchange between the sea floor and water column

    Get PDF
    Exchanges of solutes and solids between the sea floor and water column are a vital component of ecosystem functioning in marine habitats around the globe. This review explores particle and solute exchange processes, the different mechanisms through which they interact at the ecosystem level, as well as their interdependencies. Solute and particle exchange processes are highly dependent on the characteristics of the environment within which they takes place. Exchange is driven directly by a number of factors, such as currents, granulometry, nutrient, and matter inputs, as well as living organisms. In turn, the occurrence of exchanges can influence adjacent environments and organisms. Major gaps in the present knowledge include the temporal and spatial variation in many of the processes driving benthic/pelagic exchange processes and the variability in the relative importance of individual processes caused by this variation. Furthermore, the accurate assessment of some anthropogenic impacts is deemed questionable due to a lack of baseline data and long-term effects of anthropogenic actions are often unknown. It is suggested that future research should be transdisciplinary and at ecosystem level wherever possible and that baseline surveys should be implemented and long-term observatories established to fill the current knowledge gaps

    A conceptual framework for assessing the ecosystem service of waste remediation: In the marine environment

    Get PDF
    In the marine environment, the ecosystem service of Waste Remediation (WR) enables humans to utilise the natural functioning of ecosystems to process and detoxify a large number of waste products and therefore avoid harmful effects on human wellbeing and the environment. Despite its importance, to date the service has been poorly defined in ecosystem service classifications and rarely valued or quantified. This paper therefore addresses a gap in the literature regarding the application of this key, but poorly documented ecosystem service. Here we present a conceptual framework by which the ecosystem service of WR can be identified, placed into context within current ecosystem classifications and assessed. A working definition of WR in the marine context is provided as is an overview of the different waste types entering the marine environment. Processes influencing the provisioning of WR are categorised according to how they influence the input, cycling/detoxification, sequestration/storage and export of wastes, with operational indicators for these processes discussed. Finally a discussion of the wider significance of the service of WR is given, including how we can maximise the benefits received from it. It is noted that many methods used in the assessment, quantification and valuation of the service are currently hampered due to the benefits of the service often not being tangible assets set in the market and/or due to a lack of information surrounding the processes providing the service. Conclusively this review finds WR to be an under researched but critically important ecosystem service and provides a first attempt at providing operational guidance on the long term sustainable use of WR in marine environments

    MARLAN: Plymouth Marine Laboratory’s Marine Artificial Light at Night Research Facility

    Get PDF
    This document provides technical guidance about, and design description of, the Plymouth Marine Laboratory’s Marine Artificial Light At Night Research Facility (MARLAN), a bespoke seawater aquarium facility dedicated to the study of light pollution in the marine environment

    Modelling impacts and recovery in benthic communities exposed to localised high CO2

    Get PDF
    Regulations pertaining to carbon dioxide capture with offshore storage (CCS) require an understanding of the potential localised environmental impacts and demonstrably suitable monitoring practices. This study uses a marine ecosystem model to examine a comprehensive range of hypothetical CO2 leakage scenarios, quantifying both impact and recovery time within the benthic system. Whilst significant mortalities and long recovery times were projected for the larger and longer term scenarios, shorter-term or low level exposures lead to reduced projected impacts. This suggests that efficient monitoring and leak mitigation strategies, coupled with appropriate selection of storage sites can effectively limit concerns regarding localised environmental impacts from CCS. The feedbacks and interactions between physiological and ecological responses simulated reveal that benthic responses to CO2 leakage could be complex. This type of modelling investigation can aid the understanding of impact potential, the role of benthic community recovery and inform the design of baseline and monitoring surveys

    Advancing the potential impact of future scenarios by integrating psychological principles

    Get PDF
    Engaging with the future to make better decisions in the present is key for sustainable development and climate change responses. In this conceptual paper, we suggest a scenario building approach that connects psychological principles of future thinking with future scenario development in order to advance the impact of scenarios. Future scenario work currently does not sufficiently consider processes of human communication, emotion, cognition and has only begun to focus on people’s local contexts in recent years. We argue that more understanding of psychological processes, such as cognitive biases and heuristics, as well as psychological distance, which typically occur in future thinking, can improve the impact of scenarios. Specifically, we provide a psychological basis for systematically integrating emotion-evoking aspects into future scenario development, using tailored narratives and visuals to make content tangible and meaningful for a broad spectrum of audiences, and adapting content temporally, spatially, and linguistically to audiences, in combination with inclusive and creative co-creation of scenarios and sustainable solutions. We explain why this approach has the potential to overcome some recognised cognitive biases hampering scenario impact and intended sustainable change pro�cesses, and can therefore support the co-development of sustainable and inclusive policies and solutions that empower and connect individuals, communities, and decision makers

    Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage

    Get PDF
    This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore ecosystems. The review does not consider direct impacts on man or other land animals from elevated atmospheric CO2 levels. Improvements in our understanding of the potential impacts have come directly from CO2 storage research but have also benefitted from studies of ocean acidification and other impacts on aquifers and onshore near surface ecosystems. Research has included observations at natural CO2 sites, laboratory and field experiments and modelling. Studies to date suggest that the impacts from many lower level fault- or well-related leakage scenarios are likely to be limited spatially and temporarily and recovery may be rapid. The effects are often ameliorated by mixing and dispersion of the leakage and by buffering and other reactions; potentially harmful elements have rarely breached drinking water guidelines. Larger releases, with potentially higher impact, would be possible from open wells or major pipeline leaks but these are of lower probability and should be easier and quicker to detect and remediate

    Ocean acidification and hypoxia alter organic carbon fluxes in marine soft sediments

    Get PDF
    Anthropogenic stressors can alter the structure and functioning of infaunal communities, which are key drivers of the carbon cycle in marine soft sediments. Nonetheless, the compounded effects of anthropogenic stressors on carbon fluxes in soft benthic systems remain largely unknown. Here, we investigated the cumulative effects of ocean acidification (OA) and hypoxia on the organic carbon fate in marine sediments, through a mesocosm experiment. Isotopically labelled macroalgal detritus (13C) was used as a tracer to assess carbon incorporation in faunal tissue and in sediments under different experimental conditions. In addition, labelled macroalgae (13C), previously exposed to elevated CO2, were also used to assess the organic carbon uptake by fauna and sediments, when both sources and consumers were exposed to elevated CO2. At elevated CO2, infauna increased the uptake of carbon, likely as compensatory response to the higher energetic costs faced under adverse environmental conditions. By contrast, there was no increase in carbon uptake by fauna exposed to both stressors in combination, indicating that even a short‐term hypoxic event may weaken the ability of marine invertebrates to withstand elevated CO2 conditions. In addition, both hypoxia and elevated CO2 increased organic carbon burial in the sediment, potentially affecting sediment biogeochemical processes. Since hypoxia and OA are predicted to increase in the face of climate change, our results suggest that local reduction of hypoxic events may mitigate the impacts of global climate change on marine soft‐sediment systems

    Uncertainties in projecting climate-change impacts in marine ecosystems

    Get PDF
    Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet theyare inevitablyassociated withuncertainty.Identifying,quantifying,andcommunicatingthisuncertaintyis keytobothevaluatingtherisk associated with a projection and building confidence in its robustness. Wereview howuncertainties in such projections are handled in marine science. We employan approach developedin climatemodelling by breaking uncertainty down into(i) structural (model) uncertainty,(ii) initialization and internalvariabilityuncertainty,(iii)parametricuncertainty,and(iv)scenariouncertainty.Foreachuncertaintytype,wethenexaminethecurrent state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gainsontheseasonal-to-decadaltime-scale.Weconcludethatallpartsofmarinesciencecouldbenefitfromagreaterexchangeofideas,particularly concerningsuchauniversalproblemsuchasthetreatmentofuncertainty.Finally,marinescienceshouldstrivetoreachthepointwherescenario uncertainty is the dominant uncertainty in our projections
    corecore