164 research outputs found

    Spin Triplet Supercurrent in Co/Ni Multilayer Josephson Junctions with Perpendicular Anisotropy

    Full text link
    We have measured spin-triplet supercurrent in Josephson junctions of the form S/F'/F/F'/S, where S is superconducting Nb, F' is a thin Ni layer with in-plane magnetization, and F is a Ni/[Co/Ni]n multilayer with out-of-plane magnetization. The supercurrent in these junctions decays very slowly with F-layer thickness, and is much larger than in similar junctions not containing the two F' layers. Those two features are the characteristic signatures of spin-triplet supercurrent, which is maximized by the orthogonality of the magnetizations in the F and F' layers. Magnetic measurements confirm the out-of-plane anisotropy of the Co/Ni multilayers. These samples have their critical current optimized in the as-prepared state, which will be useful for future applications.Comment: 4 pages, 4 figures, formatted in RevTeX version 4. Submitted to Physical Review B on August 13th, 201

    Limits of magnetic interactions in Ni-Nb ferromagnet-superconductor bilayers

    Full text link
    Studies of ferromagnet-superconductor hybrid systems have uncovered magnetic interactions between the competing electronic orderings. The Electromagnetic Proximity Effect predicts the formation of a spontaneous vector potential inside a superconductor placed in proximity to a ferromagnet. In this work, we use a Nb superconducting layer and Ni ferromagnetic layer to test for such magnetic interactions. We use the complementary, but independent, techniques of polarised neutron reflectometry and detection Josephson junctions to probe the magnetic response inside the superconducting layer at close to zero applied field. In this condition, Meissner screening is negligible, so our measurements examine only additional magnetic and screening contributions from proximity effects. We report that any signals attributable to such proximity effects are below the detection resolution of our experimental study. We estimate a limit of the size of the zero field Electromagnetic Proximity Effect in our Ni-Nb samples to be ±\pm0.27 mT from our measurements.Comment: Main text 18 pages, 4 figures, 1 table. Plus SI 8 pages, 6 figure

    Distortions to the penetration depth and coherence length of superconductor/normal-metal superlattices

    Get PDF
    Superconducting (S) thin film superlattices composed of Nb and a normal-metal spacer (N) have been extensively utilized in Josephson junctions given their favorable surface roughness compared to Nb films of comparable thickness. In this work, we characterize the London penetration depth and Ginzburg-Landau coherence lengths of S/N superlattices using polarized neutron reflectometry and electrical transport. Despite the normal-metal spacer layers being only approximately 8% of the total superlattice thickness, we surprisingly find that the introduction of these thin N spacers between S layers leads to a dramatic increase in the measured London penetration depth compared to that of a single Nb film of comparable thickness. Using the measured values for the effective in- and out-of-plane coherence lengths, we quantify the induced anisotropy of the superlattice samples and compare to a single Nb film sample. From these results, we find that the superlattices behave similarly to layered 2D superconductors

    Making Operation-based CRDTs Operation-based

    Get PDF
    Conflict-free Replicated Datatypes can simplify the design of predictable eventual consistency. They can be classified into state-based or operation-based. Operation-based approaches have the potential for allowing compact designs in both the sent message and the object state size, but cur- rent approaches are still far from this objective. Here we explore the design space for operation-based solutions, and we leverage the interaction with the middleware by offering a technique that delivers very compact solutions, while only broadcasting operation names and arguments.(undefined)(undefined

    Nitrogen-Based Magneto-Ionic Manipulation of Exchange Bias in CoFe/MnN Heterostructures

    Get PDF
    Electric field control of the exchange bias effect across ferromagnet/antiferromagnet (FM/AF) interfaces has offered exciting potentials for low-energy-dissipation spintronics. In particular, the solid state magneto-ionic means is highly appealing as it may allow reconfigurable electronics by transforming the all-important FM/AF interfaces through ionic migration. In this work, we demonstrate an approach that combines the chemically induced magneto-ionic effect with the electric field driving of nitrogen in the Ta/Co0.7_{0.7}Fe0.3_{0.3}/MnN/Ta structure to electrically manipulate exchange bias. Upon field-cooling the heterostructure, ionic diffusion of nitrogen from MnN into the Ta layers occurs. A significant exchange bias of 618 Oe at 300 K and 1484 Oe at 10 K is observed, which can be further enhanced after a voltage conditioning by 5% and 19%, respectively. This enhancement can be reversed by voltage conditioning with an opposite polarity. Nitrogen migration within the MnN layer and into the Ta capping layer cause the enhancement in exchange bias, which is observed in polarized neutron reflectometry studies. These results demonstrate an effective nitrogen-ion based magneto-ionic manipulation of exchange bias in solid-state devices.Comment: 28 pages, 4 figures; supporting information: 17 pages, 11 figure

    Probing elastic and inelastic breakup contributions to intermediate-energy two-proton removal reactions

    Get PDF
    The two-proton removal reaction from 28Mg projectiles has been studied at 93 MeV/u at the NSCL. First coincidence measurements of the heavy 26Ne projectile residues, the removed protons and other light charged particles enabled the relative cross sections from each of the three possible elastic and inelastic proton removal mechanisms to be determined. These more final-state-exclusive measurements are key for further interrogation of these reaction mechanisms and use of the reaction channel for quantitative spectroscopy of very neutron-rich nuclei. The relative and absolute yields of the three contributing mechanisms are compared to reaction model expectations - based on the use of eikonal dynamics and sd-shell-model structure amplitudes.Comment: Accepted for publication in Physical Review C (Rapid Communication

    Elastic breakup cross sections of well-bound nucleons

    Get PDF
    The 9Be(28Mg,27Na) one-proton removal reaction with a large proton separation energy of Sp(28Mg)=16.79 MeV is studied at intermediate beam energy. Coincidences of the bound 27Na residues with protons and other light charged particles are measured. These data are analyzed to determine the percentage contributions to the proton removal cross section from the elastic and inelastic nucleon removal mechanisms. These deduced contributions are compared with the eikonal reaction model predictions and with the previously measured data for reactions involving the re- moval of more weakly-bound protons from lighter nuclei. The role of transitions of the proton between different bound single-particle configurations upon the elastic breakup cross section is also quantified in this well-bound case. The measured and calculated elastic breakup fractions are found to be in good agreement.Comment: Phys. Rev. C 2014 (accepted

    First-order phase transition vs. spin-state quantum-critical scenarios in strain-tuned epitaxial cobaltite thin films

    Full text link
    Pr-containing perovskite cobaltites exhibit unusual valence transitions, coupled to coincident structural, spin-state, and metal-insulator transitions. Heteroepitaxial strain was recently used to control these phenomena in the model (Pr1−y_{1-y}Yy_y)1−x_{1-x}Cax_xCoO3−δ_{3-\delta} system, stabilizing a nonmagnetic insulating phase under compression (with a room-temperature valence/spin-state/metal-insulator transition) and a ferromagnetic metallic phase under tension, thus exposing a potential spin-state quantum critical point. The latter has been proposed in cobaltites and can be probed in this system as a function of a disorder-free variable (strain). We study this here via thickness-dependent strain relaxation in compressive SrLaAlO4_4(001)/(Pr0.85_{0.85}Y0.15_{0.15})0.70_{0.70}Ca0.30_{0.30}CoO3−δ_{3-\delta} epitaxial thin films to quasi-continuously probe structural, electronic, and magnetic behaviors across the nonmagnetic-insulator/ferromagnetic-metal boundary. High-resolution X-ray diffraction, electronic transport, magnetometry, polarized neutron reflectometry, and temperature-dependent magnetic force microscopy provide a detailed picture, including abundant evidence of temperature- and strain-dependent phase coexistence. This indicates a first-order phase transition as opposed to spin-state quantum-critical behavior, which we discuss theoretically via a phenomenological Landau model for coupled spin-state and magnetic phase transitions.Comment: main text + supplementary materia
    • …
    corecore